×

A review on octupolar tensors. (English) Zbl 1531.81185

Summary: In its most restrictive definition, an octupolar tensor is a fully symmetric traceless third-rank tensor in three space dimensions. So great a body of works have been devoted to this specific class of tensors and their physical applications that a review would perhaps be welcome by a number of students. Here, we endeavour to place octupolar tensors into a broader perspective, considering non-vanishing traces and non-fully symmetric tensors as well. A number of general concepts are recalled and applied to either octupolar and higher-rank tensors. As a tool to navigate the diversity of scenarios we envision, we introduce the octupolar potential, a scalar-valued function which can easily be given an instructive geometrical representation. Physical applications are plenty; those to liquid crystal science play a major role here, as they were the original motivation for our interest in the topic of this review.

MSC:

81T32 Matrix models and tensor models for quantum field theory
35P15 Estimates of eigenvalues in context of PDEs
35G20 Nonlinear higher-order PDEs
76A15 Liquid crystals
15A15 Determinants, permanents, traces, other special matrix functions

References:

[1] Adams, B.; Boehler, J.; Guidi, M.; Onat, E., Group theory and representation of microstructure and mechanical behavior of polycrystals, J. Mech. Phys. Solids, 40, 723-37 (1992) · Zbl 0760.73058 · doi:10.1016/0022-5096(92)90001-I
[2] Ahmad, F., Invariants of a Cartesian tensor of rank 3, Arch. Mech., 63, 383-92 (2011) · Zbl 1269.74072
[3] Applequist, J., Fundamental relationships in the theory of electric multipole moments and multipole polarizabilities in static fields, Chem. Phys., 85, 279-90 (1984) · doi:10.1016/0301-0104(84)85039-9
[4] Applequist, J., Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media, J. Phys. A: Math. Gen., 22, 4303-30 (1989) · Zbl 0732.33007 · doi:10.1088/0305-4470/22/20/011
[5] Auffray, N., Décomposition harmonique des tenseurs. Méthode spectrale, C. R. Mécanique, 336, 370-5 (2008) · Zbl 1158.15305 · doi:10.1016/j.crme.2007.12.005
[6] Auffray, N.; Altenbach, H.; Forest, S.; Krivtsov, A., Geometrical picture of third-order tensors, Generalized Continua as Models for Materials: With Multi-Scale Effects or Under Multi-Field Actions, pp 17-40 (2013), Springer
[7] Backus, G., A geometrical picture of anisotropic elastic tensors, Rev. Geophys., 8, 633-71 (1970) · doi:10.1029/RG008i003p00633
[8] Baerheim, R., Harmonic decomposition of the anisotropic elasticity tensor, Q. J. Mech. Appl. Math., 46, 391-418 (1993) · Zbl 0783.73010 · doi:10.1093/qjmam/46.3.391
[9] Baerheim, R., Classification of symmetry by means of Maxwell multipoles, Q. J. Mech. Appl. Math., 51, 73-104 (1998) · Zbl 0935.74027 · doi:10.1093/qjmam/51.1.73
[10] Beltrami, E., Sulle funzioni bilineari, Giornale di Matematiche Battaglini, 11, 98-106 (1873) · JFM 05.0085.02
[11] Bini, D.; Damour, T., Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.124037
[12] Bisi, F.; Longa, L.; Pajak, G.; Rosso, R., Excluded-volume short-range repulsive potential for tetrahedral molecules, Mol. Cryst. Liq. Cryst., 525, 12-28 (2010) · doi:10.1080/15421401003795670
[13] Boehler, J. P.; Kirillov, A. A.; Onat, E. T., On the polynomial invariants of the elasticity tensor, J. Elast., 34, 97-110 (1994) · Zbl 0808.73007 · doi:10.1007/BF00041187
[14] Boerner, H., Representations of Groups With Special Consideration for the Needs of Modern Physics (1963), North-Holland · Zbl 0112.26301
[15] Bohnet-Waldraff, F.; Braun, D.; Giraud, O., Tensor eigenvalues and entanglement of symmetric states, Phys. Rev. A, 94 (2016) · doi:10.1103/PhysRevA.94.042324
[16] Boyd, R. W., Nonlinear Optics (2008), Academic Press
[17] Brand, H. R.; Pleiner, H.; Cladis, P., Flow properties of the optically isotropic tetrahedratic phase, Eur. Phys. J. E, 7, 163-6 (2002) · doi:10.1140/epje/i200201113
[18] Buckingham, A. D., Angular correlation in liquids, Discuss. Faraday Soc., 43, 205-11 (1967) · doi:10.1039/df9674300205
[19] Cartwright, D.; Sturmfels, B., The number of eigenvalues of a tensor, Linear Algebra Appl., 438, 942-52 (2013) · Zbl 1277.15007 · doi:10.1016/j.laa.2011.05.040
[20] Cauchy, A. L., Mémoire sur les systèmes isotropes de points matériels, Mém Acad. Sci. Paris, 22, 615-54 (1850)
[21] Cauchy, A. L., Mémoire sur les systèmes isotropes de points matériels, Cambridge Library Collection - Mathematics, vol 2, pp 351-86 (2009), Cambridge University Press
[22] Cayley, A., On contour and slope lines, Phil. Mag., 18, 264-8 (1859) · doi:10.1080/14786445908642760
[23] Che, H.; Chen, H.; Wang, Y., C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89, 41-49 (2019) · Zbl 1444.15013 · doi:10.1016/j.aml.2018.09.014
[24] Chen, Y.; Jákli, A.; Qi, L., The C-eigenvalue of third order tensors and its application in crystals, J. Ind. Manag. Optim., 19, 265-81 (2023) · Zbl 1513.15043 · doi:10.3934/jimo.2021183
[25] Coope, J. A R.; Snider, R. F.; McCourt, F. R., Irreducible Cartesian tensors, J. Chem. Phys., 43, 2269-75 (1965) · doi:10.1063/1.1697123
[26] Cosserat, E.; Cosserat, F., Sur la théorie des corps minces, C. R. Acad. Sci., Paris, 146, 169-72 (1908) · JFM 39.0856.01
[27] Cosserat, E.; Cosserat, F., ThéOrie des Corps DéFormables (1909), Hermann · JFM 40.0862.02
[28] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol 1 (1989), Wiley · Zbl 0729.35001
[29] Curie, P.; Curie, J., Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées, C. R. Acad. Sci., Paris, 91, 294-5 (1880)
[30] Curie, P.; Curie, J., Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. Soc. Min. France, 3, 90-93 (1880) · doi:10.3406/bulmi.1880.1564
[31] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals (The International Series of Monographs on Physics vol 83) (1993), Clarendon
[32] Dennis, M. R., Canonical representation of spherical functions: Sylvester’s theorem, Maxwell’s multipoles and Majorana’s sphere, J. Phys. A: Math. Gen., 37, 9487-500 (2004) · Zbl 1069.43003 · doi:10.1088/0305-4470/37/40/011
[33] Eckart, C.; Young, G., The approximation of one matrix by another of lower rank, Psychometrika, 1, 211-8 (1936) · JFM 62.1075.02 · doi:10.1007/BF02288367
[34] Ericksen, J., Anisotropic fluids, Arch. Ration. Mech. Anal., 4, 231-7 (195960) · Zbl 0093.18002 · doi:10.1007/BF00281389
[35] Ericksen, J. L., Theory of anisotropic fluids, Trans. Soc. Rheol., 4, 29-39 (1960) · doi:10.1122/1.548864
[36] Ericksen, J. L., Transversely isotropic fluids, Kolloid-Z., 173, 117-22 (1960) · doi:10.1007/BF01502416
[37] Ericksen, J. L., Conservation laws for liquid crystals, Trans. Soc. Rheol., 5, 23-34 (1961) · doi:10.1122/1.548883
[38] Ericksen, J. L., Nilpotent energies in liquid crystal theory, Arch. Ration. Mech. Anal., 10, 189-96 (1962) · Zbl 0109.23002 · doi:10.1007/BF00281186
[39] Ericksen, J. L., Inequalities in liquid crystal theory, Phys. Fluids, 9, 1205-7 (1966) · doi:10.1063/1.1761821
[40] Fel, L. G., Symmetry of the Fréedericksz transition in nonchiral nematic liquid crystals, Phys. Rev. E, 52, 2692-701 (1995) · doi:10.1103/PhysRevE.52.2692
[41] Fel, L. G., Tetrahedral symmetry in nematic liquid crystals, Phys. Rev. E, 52, 702-17 (1995) · doi:10.1103/PhysRevE.52.702
[42] Forte, S.; Vianello, M., Symmetry classes for elasticity tensors, J. Elast., 43, 81-108 (1996) · Zbl 0876.73008 · doi:10.1007/BF00042505
[43] Forte, S.; Vianello, M., Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Eng. Sci., 35, 1317-26 (1997) · Zbl 0903.73002 · doi:10.1016/S0020-7225(97)00036-0
[44] Gaeta, G.; Virga, E. G., Octupolar order in three dimensions, Eur. Phys. J. E, 39, 113 (2016) · doi:10.1140/epje/i2016-16113-7
[45] Gaeta, G.; Virga, E. G., The symmetries of octupolar tensors, J. Elast., 135, 295-350 (2019) · Zbl 1415.76028 · doi:10.1007/s10659-018-09722-8
[46] Geymonat, G.; Weller, T., Classes de symétrie des solides piézoélectriques, C. R. Acad. Sci., Paris, 335, 847-52 (2002) · Zbl 1020.74015 · doi:10.1016/S1631-073X(02)02573-6
[47] Giraud, O.; Braun, D.; Baguette, D.; Bastin, T.; Martin, J., Tensor representation of spin states, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.080401
[48] Giraud, O.; Braun, P.; Braun, D., Classicality of spin states, Phys. Rev. A, 78 (2008) · Zbl 1255.81026 · doi:10.1103/PhysRevA.78.042112
[49] Grioli, G., Elasticità asimmetrica, Ann. Mat. P. Appl., 50, 389-417 (1960) · Zbl 0123.40504 · doi:10.1007/BF02414525
[50] Guidi, M.; Adams, B. L.; Onat, E. T., Tensorial representation of the orientation distribution function in cubic polycrystals, Texture Stress Microstruct., 19, 147-67 (1992) · doi:10.1155/TSM.19.147
[51] Hamermesh, M., Group Theory and its Application to Physical Problems (1989), Dover · Zbl 0151.34101
[52] Hess, S., Tensors for Physics. Undergraduate Lecture Notes in Physics (2015), Springer · Zbl 1320.00002
[53] Hess, S.; Waldmann, L., Kinetic theory for a dilute gas of particles with spin, Z. Naturforschg., 21, 1529-46 (1966) · doi:10.1515/zna-1966-1001
[54] Itin, Y.; Reches, S., Decomposition of third-order constitutive tensors, Math. Mech. Solids, 27, 222-49 (2022) · Zbl 07590421 · doi:10.1177/10812865211016530
[55] Jerphagnon, J., Invariants of the third-rank Cartesian tensor: Optical nonlinear susceptibilities, Phys. Rev. B, 2, 1091-8 (1970) · doi:10.1103/PhysRevB.2.1091
[56] Jerphagnon, J.; Chemla, D.; Bonneville, R., The description of the physical properties of condensed matter using irreducible tensors, Adv. Phys., 27, 609-50 (1978) · doi:10.1080/00018737800101454
[57] Jordan, C., Mémoire sur les formes bilinéaires, J. Math. Pure Appl., 19, 35-54 (1874) · JFM 06.0070.02
[58] Jordan, C., Sur la reduction des formes bilinéaires, C. R. Acad. Sci., Paris, 78, 614-7 (1874) · JFM 06.0070.03
[59] Kleinman, D. A., Nonlinear dielectric polarization in optical media, Phys. Rev., 126, 1977-9 (1962) · doi:10.1103/PhysRev.126.1977
[60] Lavrentovich, O. D., Ferroelectric nematic liquid crystal, a century in waiting, Proc. Natl Acad. Sci. USA, 117, 14629-31 (2020) · doi:10.1073/pnas.2008947117
[61] Lazar, M., Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity, Z. Angew. Math. Mech., 96, 1291-305 (2016) · Zbl 07775124 · doi:10.1002/zamm.201500278
[62] Leurgans, S. E.; Ross, R. T.; Abel, R. B., A decomposition for three-way arrays, SIAM J. Matrix Anal. Appl., 14, 1064-83 (1993) · Zbl 0788.65145 · doi:10.1137/0614071
[63] Li, C.; Liu, Y.; Li, Y., C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358, 244-50 (2019) · Zbl 1428.15025 · doi:10.1016/j.amc.2019.04.036
[64] Li, W.; Ke, R.; Ching, W. K.; Ng, M. K., A C-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains, Comput. Math. Appl., 78, 1008-25 (2019) · Zbl 1442.15043 · doi:10.1016/j.camwa.2019.03.016
[65] Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Clark, N. A.; Körblova, E.; Walba, D. M., Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules, Science, 278, 1924-7 (1997) · doi:10.1126/science.278.5345.1924
[66] Liu, J.; Ding, W.; Qi, L.; Zou, W., Isotropic polynomial invariants of Hall tensor, Appl. Math. Mech., 39, 1845-56 (2018) · Zbl 1416.15020 · doi:10.1007/s10483-018-2398-9
[67] Longa, L.; Pajak, G., Generalized dispersion model of orientationally ordered phases of bent-core liquid crystals, Mol. Cryst. Liq. Cryst., 541, 152/[390]-158/[396] (2011) · doi:10.1080/15421406.2011.570200
[68] Longa, L.; Pajak, G.; Wydro, T., Chiral symmetry breaking in bent-core liquid crystals, Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.040701
[69] Longa, L.; Trojanowski, K., Ambidextrous chiral domains in nonchiral liquid-crystalline materials, Acta Phys. Pol. B, 44, 1201-7 (2013) · Zbl 1371.92145 · doi:10.5506/APhysPolB.44.1201
[70] Lubensky, T. C.; Radzihovsky, L., Theory of bent-core liquid-crystal phases and phase transitions, Phys. Rev. E, 66 (2002) · doi:10.1103/PhysRevE.66.031704
[71] Machon, T.; Alexander, G. P., Umbilic lines in orientational order, Phys. Rev. X, 6 (2016) · doi:10.1103/PhysRevX.6.011033
[72] Madhusudana, N. V., Simple molecular model for ferroelectric nematic liquid crystals exhibited by small rodlike mesogens, Phys. Rev. E, 104 (2021) · doi:10.1103/PhysRevE.104.014704
[73] Maimark, M. A.; Štern, A. I., Theory of group representations, Comprehensive Studies in Mathematics, vol 246 (1982), Springer · Zbl 0484.22018
[74] Majorana, E., Atomi orientati in campo magnetico variabile, Nuovo Cimento, 9, 43-50 (1932) · JFM 58.1373.01 · doi:10.1007/BF02960953
[75] Man, C. S., Crystallographic texture and group representations, J. Elast., 149, 3-445 (2022) · Zbl 07560232 · doi:10.1007/s10659-022-09882-8
[76] Mandle, R. J., A new order of liquids: polar order in nematic liquid crystals, Soft Matter, 18, 5014-20 (2022) · doi:10.1039/D2SM00543C
[77] Marsat, S., Cubic-order spin effects in the dynamics and gravitational wave energy flux of compact object binaries, Class. Quantum Grav., 32 (2015) · Zbl 1328.83103 · doi:10.1088/0264-9381/32/8/085008
[78] Maxwell, J. C., On hills and dales, Phil. Mag., 2, 233-40 (1870) · doi:10.1080/14786447008640422
[79] Maxwell, J. C., A Treatise on Electricity and Magnetism, vol 1 (1881), Clarendon · JFM 05.0556.01
[80] Ni, G.; Qi, L.; Wang, F.; Wang, Y., The degree of the E-characteristic polynomial of an even order tensor, J. Math. Anal. Appl., 329, 1218-29 (2007) · Zbl 1154.15304 · doi:10.1016/j.jmaa.2006.07.064
[81] Niori, T.; Sekine, T.; Watanabe, J.; Furukawa, T.; Takezoe, H., Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules, J. Mater. Chem., 6, 1231-3 (1996) · doi:10.1039/jm9960601231
[82] Pedrini, A.; Virga, E. G., Liquid crystal distortions revealed by an octupolar tensor, Phys. Rev. E, 101 (2020) · doi:10.1103/PhysRevE.101.012703
[83] Piastra, M.; Virga, E. G., Octupolar approximation for the excluded volume of axially symmetric convex bodies, Phys. Rev. E, 88 (2013) · doi:10.1103/PhysRevE.88.032507
[84] Piastra, M.; Virga, E. G., Onsagerian formula for the excluded volume of spherodisks, Phys. Rev. E, 88 (2013) · doi:10.1103/PhysRevE.88.064501
[85] Piastra, M.; Virga, E. G., Explicit excluded volume of cylindrically symmetric convex bodies, Phys. Rev. E, 91 (2015) · doi:10.1103/PhysRevE.91.062503
[86] Pleiner, H.; Brand, H. R., Tetrahedral order in liquid crystals, Braz. J. Phys., 46, 565-95 (2016) · doi:10.1007/s13538-016-0438-z
[87] Pleiner, H.; Brand, H. R., Low symmetry tetrahedral nematic liquid crystal phases: ambidextrous chirality and ambidextrous helicity, Eur. Phys. J. E, 37, 11 (2014) · doi:10.1140/epje/i2014-14011-8
[88] Qi, L., Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40, 1302-24 (2005) · Zbl 1125.15014 · doi:10.1016/j.jsc.2005.05.007
[89] Qi, L., Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325, 1363-77 (2007) · Zbl 1113.15020 · doi:10.1016/j.jmaa.2006.02.071
[90] Qi, L.; Chen, H.; Chen, Y., Tensor Eigenvalues and Their Applications (Advances in Mechanics and Mathematics vol 39) (2018), Springer Nature · Zbl 1398.15001
[91] Qi, L.; Zhang, G.; Braun, D.; Bohnet-Waldraff, F.; Giraud, O., Regularly decomposable tensors and classical spin states, Commun. Math. Sci., 15, 1651-65 (2017) · Zbl 1390.15034 · doi:10.4310/CMS.2017.v15.n6.a8
[92] Radzihovsky, L.; Lubensky, T. C., Fluctuation-driven 1st-order isotropic-to-tetrahedratic phase transition, Europhys. Lett., 54, 206-12 (2001) · doi:10.1209/epl/i2001-00296-0
[93] Roe, R., Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion, J. Appl. Phys., 36, 2024-31 (1965) · doi:10.1063/1.1714396
[94] Röhrl, H., On the zeros of polynomials over arbitrary finite dimensional algebras, Manuscr. Math., 25, 359-90 (1978) · Zbl 0425.17001 · doi:10.1007/BF01168049
[95] Röhrl, H.; Walcher, S., Projections of polynomial vector fields and the Poincaré sphere, J. Differ. Eq., 139, 22-40 (1997) · Zbl 0885.34028 · doi:10.1006/jdeq.1997.3298
[96] Romano, S., Computer simulation study of a simple cubatic mesogenic lattice model, Phys. Rev. E, 74 (2006) · doi:10.1103/PhysRevE.74.011704
[97] Romano, S., Computer simulation study of a simple tetrahedratic mesogenic lattice model, Phys. Rev. E, 77 (2008) · doi:10.1103/PhysRevE.77.021704
[98] Rosseto, M. P.; Selinger, J. V., Modulated phases of nematic liquid crystals induced by tetrahedral order, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.024708
[99] Schouten, J. A., Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications (1954), Springer · Zbl 0057.37803
[100] Sebastián, N.; Čopič, M.; Mertelj, A., Ferroelectric nematic liquid-crystalline phases, Phys. Rev. E, 106 (2022) · doi:10.1103/PhysRevE.106.021001
[101] Selinger, J. V., Interpretation of saddle-splay and the Oseen-Frank free energy in liquid crystals, Liq. Cryst. Rev., 6, 129-42 (2018) · doi:10.1080/21680396.2019.1581103
[102] Shafarevich, I. R., Basic Algebraic Geometry (A Series of Comprehensive Studies in Mathematics vol 213) (1977), Springer · Zbl 0362.14001
[103] Smith, G.; Bao, G., Isotropic invariants of traceless symmetric tensors of orders three and four, Int. J. Eng. Sci., 35, 1457-62 (1997) · Zbl 0907.15019 · doi:10.1016/S0020-7225(97)00048-7
[104] Snider, R. F., Irreducible Cartesian Tensors (De Gruyter Studies in Mathematical Physics vol 43) (2018), De Gruyter · Zbl 1392.53001
[105] Spencer, A. J M., On generating functions for the number of invariants of orthogonal tensors, Mathematika, 17, 275-86 (1970) · Zbl 0217.05602 · doi:10.1112/S0025579300002941
[106] Stewart, G. W., On the early history of the singular value decomposition, SIAM Rev., 35, 551-66 (1993) · Zbl 0799.01016 · doi:10.1137/1035134
[107] Stoker, J. J., Differential Geometry (Pure and Applied Mathematics vol XX) (1969), Wiley-Interscience · Zbl 0182.54601
[108] Sylvester, J J1876Note on spherical harmonicsPhil. Mag.3522913072291-307; Sylvester, J J1909The Collected Mathematical Papers of James Joseph Sylvestervol IIICambridge University Press
[109] Toupin, R. A., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[110] Trojanowski, K.; Cieśla, M.; Longa, L., Modulated nematic structures and chiral symmetry breaking in 2D, Liq. Cryst., 44, 273-83 (2017) · doi:10.1080/02678292.2016.1261192
[111] Trojanowski, K.; Pajak, G.; Longa, L.; Wydro, T., Tetrahedratic mesophases, chiral order and helical domains induced by quadrupolar and octupolar interactions, Phys. Rev. E, 86 (2012) · doi:10.1103/PhysRevE.86.011704
[112] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics (1992), Springer · Zbl 0779.73004
[113] Truesdell, C.; Noll, W.; Antman, S. S., The Non-Linear Field Theories of Mechanics (2004), Springer · Zbl 1068.74002
[114] Turzi, S. S., On the Cartesian definition of orientational order parameters, J. Math. Phys., 52 (2011) · Zbl 1317.82055 · doi:10.1063/1.3589961
[115] Vannucci, P., The polar analysis of a third order piezoelectricity-like plane tensor, Int. J. Sol. Struct., 44, 7803-15 (2007) · Zbl 1167.74409 · doi:10.1016/j.ijsolstr.2007.05.012
[116] Virga, E. G., Variational Theories for Liquid Crystals (Applied Mathematics and Mathematical Computation vol 8) (1994), Chapman & Hall · Zbl 0814.49002
[117] Virga, E. G., Octupolar order in two dimensions, Eur. Phys. J. E, 38, 1-7 (2015) · doi:10.1140/epje/i2015-15063-x
[118] Virga, E. G., Uniform distortions and generalized elasticity of liquid crystals, Phys. Rev. E, 100 (2019) · doi:10.1103/PhysRevE.100.052701
[119] Wade, T. L., Tensor algebra and Young’s symmetry operators, Am. J. Math., 63, 645-57 (1941) · JFM 67.0631.01 · doi:10.2307/2371380
[120] Walcher, S., Eigenvectors of tensors—a primer, Acta Appl. Math., 162, 165-83 (2019) · Zbl 1422.15011 · doi:10.1007/s10440-018-0225-7
[121] Waldmann, L.; Trübenbacher, E., Formale kinetische Theorie von Gasgemischen aus anregbaren Molekülen, Z. Naturforschg., 17, 363-76 (1962) · Zbl 0105.22806 · doi:10.1515/zna-1962-0501
[122] Wang, W.; Chen, H.; Wang, Y., A new C-eigenvalue interval for piezoelectric-type tensors, Appl. Math. Lett., 100 (2020) · Zbl 1524.15028 · doi:10.1016/j.aml.2019.106035
[123] Weyl, H., The Theory of Groups and Quantum Mechanics (1932), Dover
[124] Weyl, H., The Classical Groups. Their Invariants and Representations (Princeton Mathematical Series vol 1) (1946), Princeton University Press · JFM 65.0058.02
[125] Zannoni, C.; Luckhurst, G.; Gray, G., Distribution functions and order parameters, The Molecular Physics of Liquid Crystals, pp 51-83 (1979), Academic
[126] Zhang, T.; Golub, G. H., Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl., 23, 534-50 (2001) · Zbl 1001.65036 · doi:10.1137/S0895479899352045
[127] Zheng, Q. S., Theory of representations for tensor functions – a unified invariant approach to constitutive equations, Appl. Mech. Rev., 47, 545-87 (1994) · doi:10.1115/1.3111066
[128] Zheng, Q. S.; Zou, W. N., Irreducible decompositions of physical tensors of high orders, J. Eng. Math., 37, 273-88 (2000) · Zbl 0969.74009 · doi:10.1023/A:1004754832099
[129] Zheng, XPalffy-Muhoray, P2007Eigenvalue decomposition for tensors of arbitrary rankElectronic-Liquid Crystal Communications(available at: http://e-lc.org/tmp/Peter__Palffy-Muhoray_2007_02_03_02_33_15.pdf)
[130] Zou, W. N.; Tang, C. X.; Pan, E., Symmetry types of the piezoelectric tensor and their identification, Proc. R. Soc. A, 469 (2013) · doi:10.1098/rspa.2012.0755
[131] Zou, W. N.; Zheng, Q. S., Maxwell’s multipole representation of traceless symmetric tensors and its application to functions of high-order tensors, Proc. R. Soc. A, 459, 527-38 (2003) · Zbl 1116.74324 · doi:10.1098/rspa.2002.1053
[132] Zou, W. N.; Zheng, Q. S.; Du, D. X.; Rychlewski, J., Orthogonal irreducible decompositions of tensors of high orders, Math. Mech. Solids, 6, 249-67 (2001) · Zbl 1028.74007 · doi:10.1177/108128650100600303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.