×

A projection method based on discrete normalized dynamical system for computing C-eigenpairs. (English) Zbl 1532.15006

Summary: The largest C-eigenvalue of piezoelectric tensors determines the highest piezoelectric coupling constant, which reflects the coupling between the elastic and dielectric properties of crystal. Here, a projection method based on discrete normalized dynamical system (PDND) is established for computing the largest C-eigenvalue. Theoretical analysis of the convergence for PDND algorithm is given. In numerical experiments, the longitudinal piezoelectric modulus and the unit uniaxial direction that the extreme piezoelectric effect along took place of different piezoelectric materials are given to display the physical meaning of the C-eigenvalues and eigenvectors. Furthermore, the largest C-eigenvalue and all the corresponding eigenvectors can be obtained, which is the advantage of the proposed method.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A69 Multilinear algebra, tensor calculus
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
37M99 Approximation methods and numerical treatment of dynamical systems

Software:

TenEig
Full Text: DOI

References:

[1] Benson, AR; Gleich, DF, Computing tensor Z-eigenvectors with dynamical systems, SIAM J. Matrix Anal. Appl., 40, 4, 1311-1324 (2019) · Zbl 1431.15007 · doi:10.1137/18M1229584
[2] Che, H.; Chen, H.; Wang, Y., C-eigenvalue inclusion theorems for piezoelectric-type tensors, Appl. Math. Lett., 89, 41-49 (2019) · Zbl 1444.15013 · doi:10.1016/j.aml.2018.09.014
[3] Che, H.; Chen, H.; Wang, Y., On the M-eigenvalue estimation of fourth order partially symmetric tensors, J. Ind. Manag. Optim., 16, 1, 309-324 (2020) · Zbl 1438.15019 · doi:10.3934/jimo.2018153
[4] Chen, L.; Han, L.; Zhou, L., Computing tensor eigenvalues via homotopy methods, SIAM J. Matrix Anal. Appl., 37, 1, 290-319 (2016) · Zbl 1376.15017 · doi:10.1137/15M1010725
[5] Chen, Y.; Jákli, A.; Qi, L., The C-eigenvalue of third order tensors and its application in crystals, J. Ind. Manag. Optim., 19, 1, 265-281 (2023) · Zbl 1513.15043 · doi:10.3934/jimo.2021183
[6] Cui, L.; Hu, Q.; Chen, Y.; Song, Y., A Rayleigh quotient-gradient neural network method for computing \({\cal{Z} } \)-eigenpairs of general tensors, Numer. Linear Algebra Appl., 29, 3, e2420 (2022) · Zbl 07511601 · doi:10.1002/nla.2420
[7] Curie, J.; Curie, P., Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. Minér., 3, 4, 90-93 (1880)
[8] Curie, J.; Curie, P., Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées, C. R., 93, 1137-1140 (1881)
[9] de Jong, M.; Chen, W.; Geerlings, H.; Asta, M.; Persson, KA, A database to enable discovery and design of piezoelectric materials, Sci. Data, 2, 1, 1-13 (2015)
[10] De Lathauwer, L.; De Moor, B.; Vandewalle, J., A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 1253-1278 (2000) · Zbl 0962.15005 · doi:10.1137/S0895479896305696
[11] Gaeta, G.; Virga, EG, Octupolar order in three dimensions, Eur. Phys. J. E, 39, 11, 113 (2016) · doi:10.1140/epje/i2016-16113-7
[12] Gonze, X., Adiabatic density-functional perturbation theory, Phys. Rev. A, 52, 2, 1096 (1995) · doi:10.1103/PhysRevA.52.1096
[13] Guo, D.; Yan, L.; Nie, Z., Design, analysis, and representation of novel five-step DTZD algorithm for time-varying nonlinear optimization, IEEE Trans. Neural Netw. Learn. Syst., 29, 9, 4248-4260 (2017) · doi:10.1109/TNNLS.2017.2761443
[14] Guo, C.; Lin, W.; Liu, C., A modified Newton iteration for finding nonnegative Z-eigenpairs of a nonnegative tensor, Numer. Algorithms, 80, 595-616 (2019) · Zbl 1408.65016 · doi:10.1007/s11075-018-0498-y
[15] Han, L., An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors, Numer. Algebra Control Optim., 3, 583-599 (2013) · Zbl 1271.65064 · doi:10.3934/naco.2013.3.583
[16] Hao, L.; Cui, F.; Dai, H., A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors, Numer. Linear Algebra Appl., 22, 2, 283-298 (2015) · Zbl 1363.65063 · doi:10.1002/nla.1949
[17] Haussüuhl, S., Physical Properties of Crystals: An Introduction (2007), Weinheim: Wiley, Weinheim · doi:10.1002/9783527621156
[18] He, J.; Liu, Y.; Xu, G., An S-type inclusion set for C-eigenvalues of a piezoelectric-type tensor, Appl. Math. Lett., 121, 107448 (2021) · Zbl 1475.74037 · doi:10.1016/j.aml.2021.107448
[19] Hu, S.; Huang, Z.; Qi, L., Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method, Numer. Linear Algebra Appl., 20, 6, 972-984 (2013) · Zbl 1313.90173 · doi:10.1002/nla.1884
[20] Jerphagnon, J., Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities, Phys. Rev. B, 2, 4, 1091 (1970) · doi:10.1103/PhysRevB.2.1091
[21] Kholkin, AL; Pertsev, NA; Goltsev, AV; Safari, A.; Akdog̃an, EK, Piezolelectricity and crystal symmetry, Piezoelectric and Acoustic Materials, 17-38 (2008), New York: Springer, New York
[22] Kolda, TG; Mayo, JR, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32, 4, 1095-1124 (2011) · Zbl 1247.65048 · doi:10.1137/100801482
[23] Kolda, TG; Mayo, JR, An adaptive shifted power method for computing generalized tensor eigenpairs, SIAM J. Matrix Anal. Appl., 35, 4, 1563-1581 (2014) · Zbl 1318.65019 · doi:10.1137/140951758
[24] Kulagin, IA; Ganeev, RA; Tugushev, R.; Ryasnyansky, AI; Usmanov, T., Components of the third-order nonlinear susceptibility tensors in KDP, DKDP and LiNbO3 nonlinear optical crystals, Quantum Electron., 34, 7, 657 (2004) · doi:10.1070/QE2004v034n07ABEH002823
[25] Kuo, Y.; Lin, W.; Liu, C., Continuation methods for computing Z-/H-eigenpairs of nonnegative tensors, J. Comput. Appl. Math., 340, 71-88 (2018) · Zbl 1432.65044 · doi:10.1016/j.cam.2018.02.027
[26] Li, C.; Liu, Y.; Li, Y., C-eigenvalues intervals for piezoelectric-type tensors, Appl. Math. Comput., 358, 244-250 (2019) · Zbl 1428.15025
[27] Liang, C.; Yang, Y., Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor, Comput. Appl. Math., 40, 7, 1-22 (2021) · Zbl 1476.15043 · doi:10.1007/s40314-021-01636-x
[28] Lim, L.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP05: Proceeding of IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing 1, pp. 129-132 (2005)
[29] Lippmann, G., Principe de la conservation de l’électricité, ou second principe de la théorie des phénomènes électriques, Ann. Chim. Phys., 10, 1, 381-394 (1881)
[30] Lovett, D., Tensor Properties of Crystals (1989), Bristol: Institute of Physics Publishing, Bristol
[31] Nye, JF, Physical Properties of Crystals: Their Representation by Tensors and Matrices (1985), Oxford: Oxford University Press, Oxford
[32] Ouyang, J.; Ramesh, R.; Roytburd, AL, Intrinsic effective piezoelectric coefficient e 31, f for ferroelectric thin films, Appl. Phys. Lett., 86, 15, 152901 (2005) · doi:10.1063/1.1899252
[33] Qi, L., Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 6, 1302-1324 (2005) · Zbl 1125.15014 · doi:10.1016/j.jsc.2005.05.007
[34] Sang, C., A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80, 3, 781-794 (2019) · Zbl 1407.15014 · doi:10.1007/s11075-018-0506-2
[35] Wang, W., Chen, H., Wang, Y., Zhou, G.: A proximal alternating minimization algorithm for the largest C-eigenvalue of piezoelectric-type tensors. J. Glob. Optim. 1-18 (2022)
[36] Wang, G.; Zhou, G.; Caccetta, L., Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst.-Ser. B, 22, 187-197 (2017) · Zbl 1362.15014
[37] Wang, X.; Che, M.; Wei, Y., Neural network approach for solving nonsingular multi-linear tensor systems, J. Comput. Appl. Math., 368, 112569 (2020) · Zbl 1433.65042 · doi:10.1016/j.cam.2019.112569
[38] Warner, AW; Onoe, M.; Coquin, GA, Determination of elastic and piezoelectric constants for crystals in class (3m), J. Acoust. Soc. Am., 42, 6, 1223-1231 (1967) · doi:10.1121/1.1910709
[39] Wilkinson, JH, The Algebraic Eigenvalue Problem (1965), Oxford: Clarendon, Oxford · Zbl 0258.65037
[40] Yang, Y.; Liang, C., Computing the largest C-eigenvalue of a tensor using convex relaxation, J. Optim. Theory Appl., 192, 2, 648-677 (2022) · Zbl 1484.15032 · doi:10.1007/s10957-021-01983-z
[41] Zhao, J.; Luo, J., Properties and calculation for C-eigenvalues of a piezoelectric-type tensor, J. Ind. Manag. Optim. (2021) · Zbl 1513.15024 · doi:10.3934/jimo.2021162
[42] Zhao, R.; Zheng, B.; Liang, M.; Xu, Y., A locally and cubically convergent algorithm for computing \({\cal{Z} } \)-eigenpairs of symmetric tensors, Numer. Linear Algebra Appl., 27, 3, e2284 (2021) · Zbl 1474.65091 · doi:10.1002/nla.2284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.