×

Cellular structure of the Pommaret-Seiler resolution for quasi-stable ideals. (English) Zbl 07911008

Summary: We prove that the Pommaret-Seiler resolution for quasi-stable ideals is cellular and give a cellular structure for it. This shows that this resolution is a generalization of the well known Eliahou-Kervaire resolution for stable ideals in a deeper sense. We also prove that the Pommaret-Seiler resolution can be reduced to the minimal one via Discrete Morse Theory and provide a constructive algorithm to perform this reduction.

MSC:

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
05E40 Combinatorial aspects of commutative algebra

References:

[1] Albert, M.; Fetzer, M.; Sáenz-de-Cabezón, E.; Seiler, WM, On the free resolution induced by a Pommaret basis, J. Symb. Comput., 68, 4-26, 2015 · Zbl 1327.13097 · doi:10.1016/j.jsc.2014.09.008
[2] Àlvarez-Montaner, J.; Fernández-Ramos, O.; Gimenez, P., Pruned cellular free resolutions of monomial ideals, J. Algebra, 541, 126-145, 2020 · Zbl 1452.13021 · doi:10.1016/j.jalgebra.2019.09.013
[3] Aramova, A.; Herzog, J.; Hibi, T., Squarefree lexsegment ideals, Math. Z., 228, 2, 353-378, 1998 · Zbl 0914.13007 · doi:10.1007/PL00004621
[4] Barile, M.; Macchia, A., Minimal cellular resolutions of the edge ideals of forests, Electron. J. Combin., 27, P2.41, 2020 · Zbl 1472.13012 · doi:10.37236/8810
[5] Batzies, E.; Welker, V., Discrete Morse theory for cellular resolutions, J. Reine Angew. Math., 543, 147-168, 2002 · Zbl 1055.13012
[6] Bayer, D.; Peeva, I.; Sturmfels, B., Monomial resolutions, Math. Res. Lett., 5, 31-46, 1998 · Zbl 0909.13010 · doi:10.4310/MRL.1998.v5.n1.a3
[7] Bayer, D.; Sturmfels, B., Cellular resolutions of monomial modules, J. Reine Angew. Math., 502, 123-140, 1998 · Zbl 0909.13011 · doi:10.1515/crll.1998.083
[8] Bermejo, I.; Gimenez, P., Saturation and Castelnuovo-Mumford regularity, J. Algebra, 303, 592-617, 2006 · Zbl 1105.13010 · doi:10.1016/j.jalgebra.2005.05.020
[9] Bertone, C.; Cioffi, F., The close relation between border and Pommaret marked bases, Collect. Math., 73, 181-201, 2022 · Zbl 1537.13049 · doi:10.1007/s13348-021-00313-w
[10] Caviglia, G.; Sbarra, E., Characteristic-free bounds for the Castelnuovo-Mumford regularity, Compos. Math., 141, 1365-1373, 2005 · Zbl 1100.13020 · doi:10.1112/S0010437X05001600
[11] Ceria, M., Combinatorial decompositions for monomial ideals, J. Symb. Comput., 104, 630-652, 2021 · Zbl 1458.13030 · doi:10.1016/j.jsc.2020.09.004
[12] Ceria, M.; Mora, T., Toward involutive bases over effective rings, Appl. Algebra Engrg. Comm. Comput., 31, 5-6, 359-387, 2020 · Zbl 1474.13054 · doi:10.1007/s00200-020-00448-6
[13] Charalambous, H.; Evans, G., Resolutions obtained by iterated mapping cones, J. Algebra, 176, 750-754, 1995 · Zbl 0840.13005 · doi:10.1006/jabr.1995.1270
[14] Cimpoeaş, M., Some remarks on Borel type ideals, Comm. Algebra, 37, 2, 724-727, 2009 · Zbl 1159.13015 · doi:10.1080/00927870802186227
[15] Cooper, SM; El-Khoury, S.; Faridi, S.; Mayes-Tang, S.; Morey, S.; Sega, LM; Spiroff, S., Morse resolutions of powers of square-free monomial ideals of projective dimension one, J. Algebra. Combin., 55, 1085-1122, 2022 · Zbl 1487.13003 · doi:10.1007/s10801-021-01085-z
[16] Cox, D.; Little, J.; O’Shea, D., Using Algebraic Geometry, 2005, Heidelberg: Springer Verlag, Heidelberg · Zbl 1079.13017
[17] Dochtermann, A.; Mohammadi, F., Cellular resolutions from mapping cones, J. Combin. Theory Ser. A, 128, 180-206, 2014 · Zbl 1301.05379 · doi:10.1016/j.jcta.2014.08.007
[18] Eliahou, S.; Kervaire, M., Minimal free resolutions of some monomial ideals, J. Algebra, 129, 1-25, 1990 · Zbl 0701.13006 · doi:10.1016/0021-8693(90)90237-I
[19] Evans,G. A.: Noncommutative involutive bases. arXiv preprint math/0602.140, arxiv:0602140 (2006)
[20] Forman, R., Morse theory for cell complexes, Adv. Math., 134, 90-145, 1998 · Zbl 0896.57023 · doi:10.1006/aima.1997.1650
[21] Forman, R., A user’s guide to Discrete Morse Theory, Sém. Lothar. Combin., 48, 12, 2001
[22] Gasharov, V.; Hibi, T.; Peeva, I., Resolutions of a-stable ideals, J. Algebra, 254, 2, 375-394, 2002 · Zbl 1089.13508 · doi:10.1016/S0021-8693(02)00083-2
[23] Gerdt, V.: Completion of linear differential systems to involution. In: Ghanza, V., Mayr, E., Vorozhtsov E. (eds.) Computer Algebra in Scientific Computing, CASC’99, pp 115-137. Springer Verlag, (1999) · Zbl 1072.12500
[24] Gerdt, V.; Blinkov, Y., Involutive bases of polynomial ideals, Math. Comput. Simul., 45, 519-542, 1998 · Zbl 1017.13500 · doi:10.1016/S0378-4754(97)00127-4
[25] Gerdt, V.; Blinkov, Y., Minimal involutive bases, Math. Comput. Simul., 45, 543-560, 1998 · Zbl 1017.13501 · doi:10.1016/S0378-4754(97)00128-6
[26] Goodarzi, A., Cellular structure for the Herzog-Takayama resolution, J. Algebr. Comb., 41, 21-28, 2015 · Zbl 1311.13014 · doi:10.1007/s10801-014-0524-7
[27] Hashemi, A., Schweinfurter, M., Seiler, W. M.: Quasi-stability versus genericity. In: Gerdt, V., Koepf, W., Mayr, E., Vorozhtsov, E.(eds.), Commutative Algebra in Scientific Computing - CASC 2012, vol 7442 of Lecture Notes in Computer Science, pp 172-184. Springer-Verlag, (2012) · Zbl 1373.13028
[28] Herzog, J.; Popescu, D.; Vladoiu, M.; Avramov, LL; Chardin, M.; Morales, M.; Polini, C., On the ext-modules of ideals of Borel type, Commutative Algebra: Interactions with Algebraic Geometty, 171-186, 2003, Providence: American Mathematical Society, Providence · Zbl 1050.13008 · doi:10.1090/conm/331/05909
[29] Herzog, J.; Takayama, Y., Resolutions by mapping cones, Homology, Homotopy and Applications, 4, 277-294, 2002 · Zbl 1028.13008 · doi:10.4310/HHA.2002.v4.n2.a13
[30] Janet, M., Les modules de formes algébriques et la théorie générale des systèmes differéntiels, Ann. École Norm Sup, 41, 27-65, 1924 · JFM 50.0321.03 · doi:10.24033/asens.754
[31] Jöllenbeck, M.; Welker, V., Minimal Reolutions Via Algebraic Discrete Morse Theory, 2009, Providence: American Mathematical Society, AMS, Providence · Zbl 1160.13007
[32] Lyubeznik, G., A new explicit finite free resolution of ideals generated by monomials in an R-sequence, J. Pure Appl. Algebra, 51, 193-195, 1988 · Zbl 0652.13012 · doi:10.1016/0022-4049(88)90088-6
[33] Mermin, J., The Eliahou-Kervaire resolution is cellular, J. Commut. Algebra, 2, 55-78, 2010 · Zbl 1237.13028 · doi:10.1216/JCA-2010-2-1-55
[34] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, volume 227 of Graduate Texts in Mathematics. Springer Verlag (2004)
[35] Peeva, I.; Stillman, M., The minimal free resolution of a Borel ideal, Expo. Math., 26, 237-247, 2008 · Zbl 1155.13010 · doi:10.1016/j.exmath.2007.10.003
[36] Plesken, W.; Robertz, D., Janet’s approach to presentations and resolutions for polynomials and linear PDEs, Arch. Math., 84, 22-37, 2005 · Zbl 1091.13018 · doi:10.1007/s00013-004-1282-x
[37] Pommaret, J., Systems of Partial Differential Equations and Lie Pseudogroups, 1978, Philadelphia: Gordon & Breach, Philadelphia · Zbl 0401.58006
[38] Riquier, C., Les Systémes d’Equations aux Dèrivèes Partielles, 1910, Paris: Gauthiers-Villars, Paris
[39] Seiler, WM, A combinatorial approach to involution and \(\delta \)-regularity I: involutive bases in polynomial algebras of solvable type, Appl. Algebra Eng. Commun. Comput., 20, 207-259, 2009 · Zbl 1175.13012 · doi:10.1007/s00200-009-0098-0
[40] Seiler, WM, A combinatorial approach to involution and \(\delta \)-regularity II: structure analysis of polynomial modules with Pommaret bases, Appl. Algebra Eng. Commun. Comput., 20, 261-338, 2009 · Zbl 1175.13011 · doi:10.1007/s00200-009-0101-9
[41] Seiler, WM, Involution, 2010, Heibelberg: Springer Verlag, Heibelberg · Zbl 1205.35003 · doi:10.1007/978-3-642-01287-7
[42] Sköldberg, E., Morse theory from an algebraic viewpoint, Trans. AMS, 385, 115-129, 2006 · Zbl 1150.16008
[43] Sköldberg, E: Resolutions of modules with initially linear syzygies. arXiv preprint math/1106.1913, arxiv:1106.1913 (2011)
[44] Spencer, D., Overdetermined systems of linear partial differential equations, Bull. AMS, 75, 179-239, 1969 · Zbl 0185.33801 · doi:10.1090/S0002-9904-1969-12129-4
[45] Taylor, D.: Ideals generated by monomials in an \(R\)-sequence. PhD thesis, University of Chicago, (1966)
[46] Wu, WT, On the construction of Gröbner basis of a polynomial ideal based on Riquier-Janet theory, Syst. Sci. Math. Sci., 4, 194-207, 1991 · Zbl 0802.13006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.