×

A two-stage method for piecewise-constant solution for Fredholm integral equations of the first kind. (English) Zbl 1458.65160

Summary: A numerical method is proposed for estimating piecewise-constant solutions for Fredholm integral equations of the first kind. Two functionals, namely the weighted total variation (WTV) functional and the simplified Modica-Mortola (MM) functional, are introduced. The solution procedure consists of two stages. In the first stage, the WTV functional is minimized to obtain an approximate solution \(\mathbf f^\ast_{\mathrm{TV}}\). In the second stage, the simplified MM functional is minimized to obtain the final result by using the damped Newton (DN) method with \(\mathbf f^\ast_{\mathrm{TV}}\) as the initial guess. The numerical implementation is given in detail, and numerical results of two examples are presented to illustrate the efficiency of the proposed approach.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations

Software:

RecPF

References:

[1] Hansen, P.C.; ; Discrete Inverse Problems: Insight and Algorithms: Philadelphia, PA, USA 2010; . · Zbl 1197.65054
[2] Delves, L.M.; Mohamed, J.L.; ; Computational Methods for Integral Equations: Cambridge, UK 1985; . · Zbl 0592.65093
[3] Dehghan, M.; Saadatmandi, A.; Chebyshev finite difference method for Fredholm integro-differential equation; Int. J. Comput. Math.: 2008; Volume 85 ,123-130. · Zbl 1131.65107
[4] Ghasemi, M.; Babolian, E.; Kajani, M.T.; Numerical solution of linear Fredholm integral equations using sinecosine wavelets; Int. J. Comput. Math.: 2007; Volume 84 ,979-987. · Zbl 1122.65130
[5] Koshev, N.; Beilina, L.; An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data; CEJM: 2013; Volume 11 ,1489-1509. · Zbl 1312.65225
[6] Koshev, N.; Beilina, L.; A posteriori error estimates for Fredholm integral equations of the first kind; Applied Inverse Problems, Springer Proceedings in Mathematics and Statistics: New York, NY, USA 2013; Volume Volume 48 ,75-93. · Zbl 1278.65198
[7] Zhang, Y.; Lukyanenko, D.V.; Yagola, A.G.; Using Lagrange principle for solving linear ill-posed problems with a priori information; Numer. Methods Progr.: 2013; Volume 14 ,468-482.
[8] Vogel, C.R.; ; Computational Methods for Inverse Problems: Philadelphia, PA, USA 2002; . · Zbl 1008.65103
[9] Tikhonov, A.N.; Regularization of incorrectly posed problems; Sov. Math. Dokl.: 1964; Volume 4 ,1624-1627. · Zbl 0183.11601
[10] Hansen, P.C.; The truncated SVD as a method for regularization; BIT Numer. Math.: 1987; Volume 27 ,534-553. · Zbl 0633.65041
[11] Hansen, P.C.; Sekii, T.; Shibahashi, H.; The modified truncated SVD method for regularization in general form; SIAM J. Sci. Stat. Comput.: 1992; Volume 13 ,1142-1150. · Zbl 0760.65044
[12] Rashed, M.T.; Numerical solutions of the integral equations of the first kind; Appl. Math. Comput.: 2003; Volume 145 ,413-420. · Zbl 1032.65147
[13] Lin, S.; Cao, F.; Xu, Z.; A convergence rate for approximate solutions of Fredholm integral equations of the first kind; Positivity: 2012; Volume 16 ,641-652. · Zbl 1262.65199
[14] Wang, K.; Wang, Q.; Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations; J. Comput. Appl. Math.: 2014; Volume 260 ,294-300. · Zbl 1293.65174
[15] Neggal, B.; Boussetila, N.; Rebbani, F.; Projected Tikhonov regularization method for Fredholm integral equations of the first kind; J. Inequal. Appl.: 2016; Volume 2016 . · Zbl 1347.65198
[16] Rudin, L.I.; Osher, S.; Fatemi, E.; Nonlinear total variation based noise removal algorithms; Physica: 1992; Volume 60 ,259-268. · Zbl 0780.49028
[17] Acar, R.; Vogel, C.R.; Analysis of bounded variation penalty methods for ill-posed problems; Inverse Probl.: 1994; Volume 10 ,1217-1229. · Zbl 0809.35151
[18] Wang, Y.; Yang, J.; Yin, W.; Zhang, Y.; A new alternating minimization algorithm for total variation image reconstruction; SIAM J. Imaging Sci.: 2008; Volume 1 ,248-272. · Zbl 1187.68665
[19] Defrise, M.; Vanhove, C.; Liu, X.; An algorithm for total variation regularization in high-dimensional linear problems; Inverse Probl.: 2011; Volume 27 ,065002. · Zbl 1230.49035
[20] Fadili, J.M.; Peyré, G.; Total variation projection with first order schemes; IEEE Trans. Image Process.: 2011; Volume 20 ,657-669. · Zbl 1372.94077
[21] Micchelli, C.A.; Shen, L.; Xu, Y.; Proximity algorithms for image models: Denoising; Inverse Probl.: 2011; Volume 27 ,045009. · Zbl 1216.94015
[22] Chan, R.H.; Liang, H.X.; Ma, J.; Positively constrained total variation penalized image restoration; Adv. Adapt. Data Anal.: 2011; Volume 3 ,1-15. · Zbl 1234.94011
[23] Strong, D.M.; Blomgren, P.; Chan, T.F.; Spatially adaptive local feature-driven total variation minimizing image restoration; Proc. SPIE: 1997; ,222-233.
[24] Chantas, G.; Galatsanos, N.P.; Molina, R.; Katsaggelos, A.K.; Variational Bayesian image restoration with a product of spatially weighted total variation image priors; IEEE Trans. Image Process.: 2010; Volume 19 ,351-362. · Zbl 1371.94079
[25] Chen, Q.; Montesinos, P.; Sun, Q.S.; Heng, P.A.; Xia, D.S.; Adaptive total variation denoising based on difference curvature; Image Vision Comput.: 2010; Volume 28 ,298-306.
[26] Chopra, A.; Lian, H.; Total variation, adaptive total variation and nonconvex smoothly clipped absolute deviation penalty for denoising blocky images; Pattern Recognit.: 2010; Volume 43 ,2609-2619. · Zbl 1209.68597
[27] El Hamidi, A.; Ménard, M.; Lugiez, M.; Ghannam, C.; Weighted and extended total variation for image restoration and decomposition; Pattern Recognit.: 2010; Volume 43 ,1564-1576. · Zbl 1191.68567
[28] Hansen, P.C.; Mosegaard, K.; Piecewise polynomial solutions to linear inverse problems; Lect. Notes Earth Sci.: 1996; Volume 63 ,284-294.
[29] Jin, B.T.; Zou, J.; Numerical estimation of piecewise constant Robin coefficient; SIAM J. Control Optim.: 2009; Volume 48 ,1977-2002. · Zbl 1197.65178
[30] Bogosel, B.; Oudet, É.; Qualitative and numerical analysis of a spectral problem with perimeter constraint; SIAM J. Control Optim.: 2016; Volume 54 ,317-340. · Zbl 1335.49070
[31] Chan, R.H.; Ng, M.K.; Conjugate gradient method for Toeplitz systems; SIAM Rev.: 1996; Volume 38 ,427-482. · Zbl 0863.65013
[32] Groetsch, C.W.; Integral equations of the first kind, inverse problems and regularization: A crash course; J. Phys. Conf. Ser.: 2007; Volume 73 ,012001.
[33] Goncharskii, A.V.; Leonov, A.S.; Yagola, A.G.; A generalized discrepancy principle; USSR Comput. Math. Math. Phys.: 1973; Volume 13 ,25-37. · Zbl 0276.65046
[34] Bakushinsky, A.; Kokurin, M.Y.; Smirnova, A.; Iterative Methods for Ill-posed Problems: An Introduction. Inverse and Ill-Posed Problems Series 54; Berlin, Germany 2011; . · Zbl 1215.47013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.