×

On complex-valued 2D eikonals. IV: continuation past a caustic. (English) Zbl 1205.35301

Summary: Theories of monochromatic high-frequency electromagnetic fields have been designed by Felsen, Kravtsov, Ludwig and others with a view to portraying features that are ignored by geometrical optics. These theories have recourse to eikonals that encode information on both phase and amplitude - in other words, are complex-valued. The following mathematical principle is ultimately behind the scenes: any geometric optical eikonal, which conventional rays engender in some light region, can be consistently continued in the shadow region beyond the relevant caustic, provided an alternative eikonal, endowed with a non-zero imaginary part, comes on stage. In the present paper we explore such a principle in dimension 2. We investigate a partial differential system that governs the real and the imaginary parts of complex-valued two-dimensional eikonals, and an initial value problem germane to it. In physical terms, the problem in hand amounts to detecting waves that rise beside, but on the dark side of, a given caustic. In mathematical terms, such a problem shows two main peculiarities: on the one hand, degeneracy near the initial curve; on the other hand, ill-posedness in the sense of Hadamard.We benefit from using a number of technical devices: hodograph transforms, artificial viscosity, and a suitable discretization. Approximate differentiation and a parody of the quasi-reversibility method are also involved. We offer an algorithm that restrains instability and produces effective approximate solutions.
For part III, cf. Appl. Anal. 85, No. 1-3, 249–276 (2006; Zbl 1131.35033).

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A25 Electromagnetic theory (general)
78A05 Geometric optics

Citations:

Zbl 1131.35033

References:

[1] A. Abdukarimov, A problem of analytic continuation from a discrete set for functions of complex variables. Approximate solution methods and questions of the well-posedness of inverse problems, 5–8, Vychisl. Tsentr, Novosibirsk, 1981. · Zbl 0517.32001
[2] Ahn S., Choi U.J., Ramm A.G. (2006) A scheme for stable numerical differentiation. J. Comput. Appl. Math. 186: 325–334 · Zbl 1086.65013 · doi:10.1016/j.cam.2005.02.002
[3] Alessandrini G. (1980) On differentiation of approximately given functions. Applicable Analysis 11: 45–59 · Zbl 0447.65006 · doi:10.1080/00036818008839318
[4] Alessandrini G. (1980) An extrapolation problem for harmonic functions. Boll. UMI 17: 860–875 · Zbl 0451.31001
[5] Alifanov O.M. (1984) Methods of solving ill-posed problems. Translated from the Russian original in J. Engrg. Phys. 45: 1237–1245
[6] Ames K.A., Isakov V. (1991) An explicit stability estimate for an ill-posed Cauchy problem for the wave equation. J. Math. Anal. Appl. 156: 597–610 · Zbl 0747.35002 · doi:10.1016/0022-247X(91)90417-X
[7] Anderssen R.S., Bloomfield P. (1973/74) Numerical differentiation procedures for non-exact data. Numer. Math. 22: 157–182 · doi:10.1007/BF01436965
[8] Anderssen R.S., Bloomfield P. (1974) A time series approach to numerical differentiation. Technometrics 16: 69–75 · Zbl 0286.65012 · doi:10.2307/1267494
[9] Anderssen R.S., de Hoog F.R. (1984) Finite difference methods for the numerical differentiation of non-exact data. Computing 33: 259–267 · doi:10.1007/BF02242272
[10] D.D. Ang & D.D. Trong, A Cauchy problem for elliptic equations: quasireversibility and error estimates. Vietnam J. Math. 32 (2004), Special Issue, 9–17. · Zbl 1207.35119
[11] D.D. Ang & D.D. Trong & M. Yamamoto, A Cauchy like problem in plane elasticity:regularization by quasi-reversibility with error estimates. Vietnam J. Math. 32 (2004), no.2, 197–208. · Zbl 1067.35143
[12] Aripov M.M., Khaidarov M. (1986) A Cauchy problem for a nonlinear heat equation in an inhomogeneous medium (in Russian). Dokl. Akad. Nauk SSSR 2: 11–13 · Zbl 0611.35050
[13] Baart M.I. (1981) Computational experience with the spectral smoothing method for differentiating noisy data. J. Comput. Phys. 42: 141–151 · Zbl 0472.65016 · doi:10.1016/0021-9991(81)90237-0
[14] V.M. Babich & V.S. Buldyrev, Short-wavelength diffraction theory. Springer-Verlag, 1991.
[15] A.B. Bakushinskii & A.V. Goncharskii, Ill-posed problems: theory and applications. Kluwer, 1995.
[16] Bakushinskii A.B., Yu M., Kokurin S.K. (2008) difference solution method for ill-posed Cauchy problems in a Hilbert space. J. Inverse Ill-Posed Problems 16: 553–565 · Zbl 1154.65039 · doi:10.1515/JIIP.2008.029
[17] J.B. Bell, The noncharacteristic Cauchy problem for a class of equations with time dependence. I: problems in one space dimension. II: multidimensional problems. SIAM J. Math. Anal. 12 (1981), pages 759–777 and 778–797. · Zbl 0482.35013
[18] Berntsson F., Eldén L. (2001) Numerical solution of a Cauchy problem for the Laplace equation. Inverse Problems 17: 839–854 · Zbl 0993.65119 · doi:10.1088/0266-5611/17/4/316
[19] M. Bertero, Regularization methods for linear inverse problems. In: Inverse problems (G. Talenti editor), Lecture Notes in Math. vol. 1225, Springer 1986. · Zbl 0603.65038
[20] Bertero M. (1989) Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics 75: 2–120
[21] M. Bertero, The use of a priori information in the solution of ill-posed problems. Pages 19–27 in Partial differential equations and applications (P. Marcellini & G. Talenti & E. Vesentini editors), Lecture Notes in Pure and Appl. Math. 177, Dekker, 1996. · Zbl 0842.65034
[22] M. Bertero & C. DeMol & G.A. Viano, The stability of inverse problems. Pages 161–214 in Inverse Scattering Problems in Optics (H. Baltes editor), Topics in Current Physics, vol.20, Springer, 1980.
[23] Bertero M., Viano G.A. (1965) On the numerical analytic continuation of the proton electromagnetic form factors. Nuovo Cimento 39: 1915–1920
[24] Bertero M., Viano G.A. (1978) On probabilistic methods for the solution of improperly posed problems. Boll. UMI B (5) 15: 483–508 · Zbl 0403.65017
[25] Bogdanova N., Kupenova T. (1979) A numerical method for analytic continuation of holomorphic functions outside the real axis. Godishnik Vyss. Ucebn. Zaved. Tekh. Fiz. 16: 91–96 · Zbl 0474.65016
[26] D. Bouche & F. Molinet, Méthodes asymptotiques en Électromagnètisme. Springer-Verlag, 1994. · Zbl 0817.35110
[27] Bourgeois L. (2005) A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Problems 21: 1087–1104 · Zbl 1071.35120 · doi:10.1088/0266-5611/21/3/018
[28] Bourgeois L. (2006) Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Problems 22: 413–430 · Zbl 1094.35134 · doi:10.1088/0266-5611/22/2/002
[29] N. Boussetila & F. Rebbani, Optimal regularization methods for ill-posed problems. Electron. J. Differential Equations 147 (2006) 15 pp. · Zbl 1112.35336
[30] Bressan A. (2003) An ill-posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova 110: 103–117 · Zbl 1114.35123
[31] W.L. Briggs & V.E. Henson, The DFT. SIAM, 1995.
[32] Cannon J. (1964) A Cauchy problem for the heat equation. Ann. Mat. Pura Appl. 66: 155–165 · Zbl 0168.36002 · doi:10.1007/BF02412441
[33] Cannon J., Douglas J. (1967) The Cauchy problem for the heat equation. SIAM J. Numer. Anal. 4: 317–336 · Zbl 0154.36502 · doi:10.1137/0704028
[34] Cannon J., Ewing R.E. (1976) A direct numerical procedure for the Cauchy problem for the heat equation. J. Math. Anal. Appl. 56: 7–17 · Zbl 0339.65050 · doi:10.1016/0022-247X(76)90003-2
[35] Cannon J.R., Miller K. (1965) Some problems in numerical analytic continuation. SIAM J. Numer. Anal. 2: 87–98 · Zbl 0214.14805
[36] A.S. Carasso, A stable marching scheme for an ill-posed initial value problem. Pages 11–35 in Improperly posed problems and their numerical treatment (Oberwolfach, 1982), Internat. Schriftenreihe Numer. Math. 63, Birkhuser, 1983.
[37] Chapman S.J., Lawry J.M.H., Ockendon J.R., Tew R.H. (1999) On the theory of complex rays. SIAM Review 41: 417–509 · Zbl 0935.78004 · doi:10.1137/S0036144599352058
[38] Cheng J., Jia X.Z., Wang Y.B. (2007) Numerical differentiation and its applications. Inverse Probl. Sci. Eng. 15: 339–357 · Zbl 1359.65035 · doi:10.1080/17415970600839093
[39] Choudhary S., Felsen L.B. (1973) Asymptotic theory for inhomogeneous waves, IEEE. Transactions on Antennas and Propagation 21: 827–842 · doi:10.1109/TAP.1973.1140598
[40] S. Choudhary & L.B. Felsen, Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking. Proceedings of IEEE 62 (1974) 1530,1541.
[41] Ciulli S., Spearman T.D. (1982) Analytic continuation from data points with unequal errors. J. Math. Phys. 23: 1752–1764 · Zbl 0541.30014 · doi:10.1063/1.525226
[42] Ciulli S., Spearman T.D. (1996) Analytic continuation from empirical data: a direct approach to the stabilization problem. J. Math. Phys. 37: 933–941 · Zbl 0870.65132 · doi:10.1063/1.531420
[43] Colton D. (1973) The noncharacteristic Cauchy problem for parabolic equations in two space variables. Proc. Amer. Math. Soc. 41: 551–556 · Zbl 0272.35041 · doi:10.1090/S0002-9939-1973-0324189-1
[44] Cox D.D. (1983) Asymptotics of M-type smoothing splines. Ann. Statist. 11: 530–551 · Zbl 0519.62034 · doi:10.1214/aos/1176346159
[45] Cucker F., Smale S. (2002) On the mathematical foundations of learning. Bull. Amer. Math. Soc. 39: 1–49 · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[46] L.A. Čudov, Difference schemes and ill-posed problems for partial differential equations (in Russian). Pages 34–62 in Computing methods and programming 8, Izdat. Moskow Univ., 1967.
[47] Cullum J. (1975) Numerical differentiation and regularization. SIAM J. Numer. Anal. 8: 254–265 · Zbl 0224.65005 · doi:10.1137/0708026
[48] A.R. Davies, Optimality in numerical differentiation. Proc. Centre Math. Anal., Austral. Nat. Univ., Canberra, 1988. · Zbl 0674.65004
[49] Denisov V.N. (1988) Stabilization of the solution of the Cauchy problem for the heat equation. Translated from the Russian original in Soviet Math. Dokl. 37: 688–692 · Zbl 0669.34007
[50] Dinh Nho Hao & H. Sahli, Stable analytic continuation by mollification and the fast Fourier transform. Methods of complex and Clifford analysis, 143– 152, SAS int. Publ., Delhi, 2004. · Zbl 1102.65031
[51] Dolgopolova T.F. (1969/70) Finite-dimensional regularization in numerical differentiation of periodic functions. Ural. Gos. Univ. Mat. Zap. 7: 27–33 · Zbl 0312.65011
[52] Dolgopolova T.F., Ivanov V.K. (1966) On numerical differentiation. USSR Computational Math. and Math. Phys. 6: 223–232 · Zbl 0168.14801 · doi:10.1016/0041-5553(66)90145-5
[53] Dorroh J.R., Ru X. (1999) The application of the method of quasi-reversibility to the sideways heat equation. J. Math. Anal. Appl. 236: 503–519 · Zbl 0994.35009 · doi:10.1006/jmaa.1999.6462
[54] J. Douglas, A numerical method for analytic continuation. Boundary problems in differential equations, pp. 179–189, University of Wisconsin Press, 1960.
[55] J. Douglas, Approximate continuation of harmonic and parabolic functions. Pages 353–364 in Numerical solution of partial differential equations (Proc. Symp. Univ. Maryland, 1965), Academic Press, 1966.
[56] Duistermaat J.J. (1974) Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27: 207–281 · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[57] R.A. Egorchenkov & Yu.A. Kravtsov, Numerical implementation of complex geometrical optics. Radiophys. and Quantum Electronics 43 (2000), no.7, 569–575 (2001).
[58] R.A. Egorchenkov & Yu.A. Kravtsov, Diffraction of super-Gaussian beams as described by the complex geometrical optics. Radiophys. and Quantum Electronics 43 (2000), no.10, 798–804 (2001).
[59] Egorov Yu.V., Kondratiev V.A. (1989) On a problem of numerical differentiation. Moscow Univ. Math. Bull. 44: 85–87 · Zbl 0694.65005
[60] Einzinger P., Felsen L.B. (1982) Evanescent waves and complex rays. IEEE, Transactions on Antennas and Propagation AP30: 594–605 · Zbl 0947.78537 · doi:10.1109/TAP.1982.1142865
[61] Einzinger P., Raz S. (1980) On the asymptotic theory of inhomogeneous wave tracking. Radio Science 15: 763–771 · doi:10.1029/RS015i004p00763
[62] Eldén L. (1987) Approximations for a Cauchy problem for the heat equation. Inverse Problems 3: 263–273 · Zbl 0645.35094 · doi:10.1088/0266-5611/3/2/009
[63] Eldén L. (1988) Hyperbolic approximations for a Cauchy problem for the heat equation. Inverse Problems 4: 59–70 · Zbl 0697.35060 · doi:10.1088/0266-5611/4/1/008
[64] L.C. Evans, Partial differential equations. Amer. Math. Soc., 1998. · Zbl 0902.35002
[65] Evgeniou T., Pontil M., Poggio T. (2000) Regularization networks and support vector machines. Advances in Computational Math. 13: 1–50 · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[66] Ewing R.E. (1975) The approximation of certain parabolic equations backward in time by Sobolev equations. SIAM J. Math. Anal. 6: 91–95 · Zbl 0292.35004 · doi:10.1137/0506029
[67] Ewing R.E. (1979) The Cauchy problem for a linear parabolic differential equation. J. Math. Anal. Appl. 71: 167–186 · Zbl 0435.35083 · doi:10.1016/0022-247X(79)90223-3
[68] Ewing R.E., Falk R.S. (1979) Numerical approximation of a Cauchy problem for a parabolic partial differential equation. Math. Comp. 33: 1125–1144 · Zbl 0439.65093 · doi:10.1090/S0025-5718-1979-0537961-3
[69] Fedotov A.M. (1992) Theoretical justification of computational algorithms for problems of analytic continuation (in Russian). Siberian Math. J. 33: 511–519 · Zbl 0787.65012 · doi:10.1007/BF00970900
[70] Fedotov A.M. (1994) Analytic continuation of functions from discrete sets. J. Inverse Ill-Posed Probl. 2: 235–252 · Zbl 0827.32010 · doi:10.1515/jiip.1994.2.3.235
[71] Felsen L.B. (1976) Complex-source-point solutions of the field equation and their relation to the propagation and scattering of Gaussian beams. Symposia Mathematica 18: 39–56
[72] Felsen L.B. (1976) Evanescent waves. J. Opt. Soc. Am. 66: 751–760 · doi:10.1364/JOSA.66.000751
[73] Franklin J.N. (1974) On Tikhonov method for ill-posed problems. Math. Computation 28: 889–907 · Zbl 0297.65053
[74] Franklin J.N. (1990) Analytic continuation by the fast Fourier transform. SIAM J. Statistic. Comput. 11: 112–122 · Zbl 0687.65017 · doi:10.1137/0911007
[75] Fujiwara H., Imai H., Takeuchi T., Iso Y. (2007) Numerical treatment of analytic continuation with multiple-precision arithmetic. Hokkaido Math. J. 36: 837–847 · Zbl 1142.65083
[76] A.A. Fuki & Yu.A. Kravtsov & O.N. Naida, Geometrical optics of weakly anisotropic media. Gordon and Breach Science Publishers, 1998. · Zbl 0956.78501
[77] Gajewski H., Zacharias K. (1972) Regularizing a class of ill-posed problems for evolution equations (German). J. Math. Anal. Appl. 38: 784–789 · Zbl 0234.65079 · doi:10.1016/0022-247X(72)90083-2
[78] Goldstein J.A. (1975) Uniqueness in nonlinear Cauchy problems in Banach spaces Proc. Amer. Math. Soc. 53: 91–95 · Zbl 0288.34060 · doi:10.1090/S0002-9939-1975-0377218-5
[79] Groetsch C.W. (1991) Differentiation of approximately specified functions. Amer Math. Monthly 98: 847–850 · Zbl 0745.26004 · doi:10.2307/2324275
[80] V. Guillemin & S. Sternsberg, Geometric asymptotics. Amer. Math. Soc. 1977.
[81] Gurjanova K.N. (1966) A method of numerical analytic continuation (in Russian) Izv. Vyss. Ucebn. Zaved Matematika 1966: 47–55
[82] Hadamard J. (1902) Sur les problmes aux dérivées partielles et leur signification physique (in French). Bull. Univ. Princeton 13: 49–52
[83] J. Hadamard, Lectures on Cauchy’s problem in linear partial differentia equations. Yale University Press, 1923. · JFM 49.0725.04
[84] G. Hammerlin & K.H. Hoffman (editors), Improperly posed problems and their numerical treatment. Birkhuser, 1983. · Zbl 0507.00012
[85] Han H., Reinhardt H.J. (1997) Some stability estimates for Cauchy problems fo elliptic equations. J. Inv. Ill-Posed Problems 5: 437–454 · Zbl 0895.35105 · doi:10.1515/jiip.1997.5.5.437
[86] P.C. Hansen, Rank-deficient and discrete ill-posed problems. SIAM 1998.
[87] Heyman E., Felsen L.B. (1983) Evanescent waves and complex rays for moda propagation in curved open waveguides. SIAM J. Appl. Math. 43: 855–884 · Zbl 0527.35072 · doi:10.1137/0143056
[88] J. van der Hoeven, On effective analytic continuation. Math. Comput. Sci. (2007) 111–175. · Zbl 1154.68574
[89] Hofmann B. (1994) On the degree of ill-posedness for nonlinear problems. J. Invers Ill-Posed Problems 2: 61–76 · Zbl 0818.35137 · doi:10.1515/jiip.1994.2.1.61
[90] Huang Y. (2008) Modified quasi-reversibility method for final value problems in Banach spaces. J. Math. Anal. Appl. 340: 757–769 · Zbl 1151.47017 · doi:10.1016/j.jmaa.2007.09.019
[91] Huang Y., Zheng Q. (2004) Regularization for ill-posed Cauchy problems associ ated with generators of analytic semigroups. J. Differ. Equations 203: 38–54 · Zbl 1068.34055 · doi:10.1016/j.jde.2004.03.035
[92] V. Isakov, Inverse problems for partial differential equations. Springer, 1998 · Zbl 0908.35134
[93] V.K. Ivanov & V.V. Vasin & V.P. Tanana, Theory of linear ill-posed problem and its applications (in Russian). Izdat. Nauka, Moskow, 1978. · Zbl 0489.65035
[94] John F. (1955) A note on improper problems in partial differential equations Comm. Pure Appl. Math. 8: 494–495 · Zbl 0065.33501 · doi:10.1002/cpa.3160080409
[95] John F. (1955) Numerical solution of the equation of heat conduction for proceeding times. Ann. Mat. Pura Appl. 40: 129–142 · Zbl 0066.10504 · doi:10.1007/BF02416528
[96] John F. (1960) Continuous dependence on data for solutions with a prescribed bound. Comm. Pure Appl. Math. 13: 551–585 · Zbl 0097.08101 · doi:10.1002/cpa.3160130402
[97] Johnson L.W., Riess R.D. (1973) An error analysis for numerical differentiation. J. Inst. Math: Appl. 11: 115–120 · Zbl 0257.65024 · doi:10.1093/imamat/11.1.115
[98] D.S. Jones, The theory of electromagnetism. Pergamon Press, 1964. · Zbl 0121.21604
[99] Keller J. (1978) Rays, waves and asymptotics. Bull. Amer. Math. Soc. 84: 727–750 · Zbl 0393.35002 · doi:10.1090/S0002-9904-1978-14505-4
[100] J.B. Keller & R.M. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwells equations. Plenum Press, 1995. · Zbl 0848.35068
[101] Kenyon R., Okounkov A. (2007) Limit shapes and the complex Burgers equation. Acta Math. 199: 263–302 · Zbl 1156.14029 · doi:10.1007/s11511-007-0021-0
[102] N. Khanal & J. Wu & J.M. Yuan & B.Y. Zhang, Complex-valued Burgers and KdV-Burgers equations. ArXiv:0901.2132v1 [math.AP] 14 Jan 2009.
[103] King J.T., Murio D.A. (1986) Numerical differentiation by finite-dimensional regularization. IMA J. Numer. Anal. 6: 65–85 · Zbl 0584.65008 · doi:10.1093/imanum/6.1.65
[104] Klibanov M.V., Santosa F. (1991) A computational quasi-reversibility method for Cauchy problem for Laplace’s equation. SIAM J. Appl. Math. 51: 1653–1675 · Zbl 0769.35005 · doi:10.1137/0151085
[105] Kline M. (1951) An asymptotic solution of Maxwell equation. Comm Pure Appl. Math. 4: 225–262 · Zbl 0043.41501 · doi:10.1002/cpa.3160040203
[106] Kline M. (1954) Asymptotic solution of linear hyperbolic partial differential equations. J. Rat. Mech. Anal. 3: 315–342 · Zbl 0058.32102
[107] M. Kline & J.W. Kay, Electromagnetic theory and geometrical optics. Wiley, 1965. · Zbl 0123.23602
[108] Knabner P., Vessella S. (1987) Stabilization of ill-posed Cauchy problems for parabolic equations. Ann. Mat. Pura Appl. 149: 393–409 · Zbl 0657.35065 · doi:10.1007/BF01773944
[109] R.J. Knops, Instability and the ill-posed Cauchy problem in elasticity. Pages 357–382 in Mechanics of solids, Pergamon Press, 1982. · Zbl 0485.73016
[110] Knowles I., Wallace R. (1995) A variational method for numerical differentiation. Numer. Math. 70: 91–110 · Zbl 0818.65013 · doi:10.1007/s002110050111
[111] Kolpakova E.V. (1976) Numerical solution of the problem of reconstructing the derivative (in Russian). Differencial’nye Uravnenija I Vychisl. Mat. Vyp. 6: 137–143
[112] Kravtsov Yu.A. (1964) A modification of the geometrical optics method (in Russian). Radiofizika 7: 664–673
[113] Kravtsov Yu.A. (1964) Asymptotic solutions of Maxwells equations near a caustic (in Russian). Radiofizika 7: 1049–1056
[114] Kravtsov Yu.A. (1967) Complex rays and complex caustics (in Russian). Radiofizika 10: 1283–1304
[115] Yu.A. Kravtsov & G.W: Forbes & A.A: Asatryan, Theory and applications of complex rays. Progress in optics, vol. XXXIX, 1–62, North–Holland, 1999.
[116] Yu.A. Kravtsov & Yu.I. Orlov, Geometrical optics of inhomogeneous media. Springer-Verlag, 1990.
[117] Yu.A. Kravtsov & Yu.I. Orlov, Caustics, catastrophes and wave fields. Springer-Verlag, 1999. · Zbl 0789.58002
[118] R. Lattès, Non-well-set problems and the method of quasi reversibility. Functional Analysis and Optimization pp. 99–113, Academic Press, 1966.
[119] R. Lattès & J.L. Lions, Méthode de quasi-reversibilité et applications (in French). Dunod, 1967.
[120] M.M. Lavrentiev, On the Cauchy problem for Laplace equation (in Russian). Dokl. Akad. Nauk SSSR 102 (1952).
[121] Lavrentiev M.M. (1956) On the Cauchy problem for Laplace equation (in Russian). Izvest. Akad. Nauk SSSR 120: 819–842
[122] Lavrentiev M.M. (1957) On the Cauchy problem for linear elliptic equations of second order (in Russian). Dokl. Akad. Nauk SSSR 112: 195–197
[123] M.M. Lavrentiev, Some improperly posed problems of mathematical physics. Springer, 1967. · Zbl 0149.41902
[124] M.M. Lavrentiev, Improperly posed problems of Mathematical Physics. Amer. Math. Soc., 1986. · Zbl 0149.41902
[125] Lavrentiev M.M., Amonov B.K. (1975) Determination of the solution of the diffusion equation from its values on discrete sets (in Russian). Dokl. Akad. Nauk SSSR 221: 1284–1285
[126] M.M. Lavrentiev & V.G. Romanov & S.P. Shishatskii, Ill-posed problems of mathematical physics and analysis. Amer. Math. Soc., 1986.
[127] Lavrentiev M.M., Vasiliev V.G. (1966) On the formulation of some improperly posed problems of mathematical physics (in Russian). Sibirsk Mat. 7: 559–576
[128] J. D. Lawrence, A catalog of special curves. Dover Publications, 1972. · Zbl 0257.50002
[129] Levine H.A., Vessella S. (1980) Estimates and regularization for solutions of some ill-posed problems of elliptic and parabolic type. Rend. Circ. Mat. Palermo 123: 161–183
[130] R.M. Lewis, Analytic continuation using numerical methods. Pages 45–81 in: Methods in Computational Physics 4 (B. Adler & S. Fernbach & M. Rotenberg editors), Academic Press 1965.
[131] Lewis R.M., Bleistein N., Ludwig D. (1967) Uniform asymptotic theory of creeping waves. Comm. Pure Appl. Math. 20: 295–328 · Zbl 0154.12103 · doi:10.1002/cpa.3160200205
[132] Lions J.L. (1966) Sur la stabilization de certaines problèmes mal posés (in French). Rend. Sem. Mat. Fis. Milano 36: 80–87 · Zbl 0167.14002 · doi:10.1007/BF02923381
[133] Lu S., Pereverzev S.V. (2006) Numerical differentiation from a viewpoint of regularization theory. Math. Comp. 75: 1853–1870 · Zbl 1115.65021 · doi:10.1090/S0025-5718-06-01857-6
[134] Lu S., Wang Y.B. (2006) First and second order numerical differentiation with Tikhonov regularization. Front. Math. China 1: 354–367 · Zbl 1222.65024 · doi:10.1007/s11464-006-0014-x
[135] Ludwig D. (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19: 215–250 · Zbl 0163.13703 · doi:10.1002/cpa.3160190207
[136] Ludwig D. (1967) Uniform asymptotic expansion of the field scattered by a convex object at high frequencies. Comm. Pure Appl. Math. 20: 103–138 · Zbl 0154.12802 · doi:10.1002/cpa.3160200103
[137] R.K. Lunenburg, Mathematical theory of optics. Univ. of California Press, 1964.
[138] Magnanini R., Talenti G. (1999) On complex-valued solutions to a 2-D eikonal equation. Part One: qualitative properties, Contemporary Math. 283: 203–229 · Zbl 0940.35100
[139] Magnanini R., Talenti G. (2002) On Complex-Valued Solutions to a 2D Eikonal Equation. Part Two: Existence Theorems, SIAM J. Math. Anal. 34: 805–835 · Zbl 1126.35367 · doi:10.1137/S0036141002400877
[140] R. Magnanini & G. Talenti, On Complex-Valued Solutions to a 2D Eikonal Equation. Part Three: analysis of a B”acklund transformation, Appl. Anal. 85, no. 1–3 (2006), 249–276. · Zbl 1131.35033
[141] R. Magnanini & G. Talenti, Approaching a partial differential equation of mixed elliptic-hyperbolic type. Pages 263–276 in Ill-posed and Inverse Problems (S.I. Kabanikin & V.G. Romanov Editors), VSP, Netherlands (2002). · Zbl 1060.35089
[142] V.P. Maslov, Ill posed Cauchy problems for ideal gas equations and their regularization. Expos 19 in quations aux drives partielles (Saint Jean de Monts, 1987), cole Polytechnique, 1987. · Zbl 0641.76068
[143] V.P. Maslov, Resonance ill-posedness (in Russian). Pages 50–62 in Current problems in applied mathematics and in mathematical physics (Russian), Nauka, Moscow, 1988
[144] V.P. Maslov & M.V. Fedoriuk, Semi-classical approximation in quantum mechanics. Reidel Publishing Company, 1981.
[145] V.P. Maslov & G.A. Omel’yanov, Geometric asymptotics for nonlinear PDE. Amer. Math. Soc., 2001.
[146] Miel G., Mooney R. (1985) On the condition number of Lagrangian numerical differentiation. Appl. Math. Comput. 16: 241–252 · Zbl 0602.65007 · doi:10.1016/0096-3003(85)90031-1
[147] Miller K. (1964) Three circle theorems in partial differential equations and applications to improperly posed problems. Arch. Rational Mech. Anal. 16: 126–154 · Zbl 0145.14203 · doi:10.1007/BF00281335
[148] Miller K. (1970) Least square methods for ill-posed problems with a prescribed bound. SIAM J. Math. Anal. 1: 52–74 · Zbl 0214.14804 · doi:10.1137/0501006
[149] Miller K. (1970) Stabilized numerical analytic prolongation with poles. SIAM J. Appl. Math. 18: 346–363 · Zbl 0211.19303 · doi:10.1137/0118029
[150] K. Miller, Stabilized numerical methods for location of poles by analytic continuation. Pages 9–20 in Studies in Numerical Analysis 2, Numerical Solutions of Nonlinear Problems, SIAM 1970.
[151] K. Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems. Pages 161–176 from Lecture Notes in Mathematics, vol. 316, Springer, 1973. · Zbl 0279.35004
[152] Miller K., Viano G.A. (1973) On the necessity of nearly-best-possible methods for analytic continuation of scattering data. J. Math. Phys. 14: 1037–1048 · Zbl 0256.35066 · doi:10.1063/1.1666435
[153] Monk P. (1986) Error estimates for a numerical method for an ill-posed Cauchy problem for the heat equation. SIAM J. Numer. Anal. 23: 1155–1172 · Zbl 0632.65102 · doi:10.1137/0723078
[154] V.A. Morozov, Methods for solving incorrectly posed problems. Springer, 1984.
[155] Murio D.A. (1987) Automatic numerical differentiation by discrete mollification. Comput. Math. Appl. 13: 381–386 · Zbl 0626.65015 · doi:10.1016/0898-1221(87)90006-X
[156] D.A. Murio, The mollification method and the numerical solution of ill-posed problems. John Wiley 1993.
[157] D.A. Murio & L. Guo, Discrete stability analysis of the mollification method for numerical differentiation, Errata. Comput. Math. Appl. 19 (1990) 15–26, Ibidem 20 (1990) 75. · Zbl 0705.65014
[158] Murio D.A., Mejia C.E., Zhan S. (1998) Discrete mollification and automatic numerical differentiation. Comput. Math. Appl. 35: 1–16 · Zbl 0910.65010 · doi:10.1016/S0898-1221(98)00001-7
[159] M.Z. Nashed, On nonlinear ill-posed problems I: Classes of operator equations and minimization of functional. Pages 351–373 in Nonlinear analysis and applications (V. Lakshmikantham editor), Dekker, 1987. · Zbl 0645.47051
[160] Natterer F. (1977) The finite element method for ill-posed problems. RAIRO Anal. Numer. 11: 271–278 · Zbl 0369.65012
[161] F. Natterer, Numerical treatment of ill-posed problems. Pages 142–167 in Inverse Problems (G. Talenti editor), Lecture Notes in Mathematics 1225, Springer 1986. · Zbl 0605.65086
[162] Oliver J. (1980) An algorithm for numerical differentiation of a function of one real variable. J. Comput. Appl. Math. 6: 145–160 · Zbl 0439.65013 · doi:10.1016/0771-050X(80)90008-X
[163] Payne L.E. (1960) Bounds in the Cauchy problem for the Laplace equation. Arch. Rational Mech. Anal. 5: 35–45 · Zbl 0094.29801 · doi:10.1007/BF00252897
[164] L.E. Payne, On some non well-posed problems for partial differential equations. Pages 239–263 in Numerical solution of nonlinear differential equations (Math. Res. Center Conference, Univ. of Wisconsin), Wiley 1966.
[165] Payne L.E. (1970) On a priori bounds in the Cauchy problem for elliptic equations SIAM J. Math. Anal. 1: 82–89 · Zbl 0199.16603
[166] L.E. Payne, Some general remarks on improperly posed problems for partia differential equations. Pages 1–30 in Symposium on non-well-posed problem and logarithmic convexity, Lecture Notes in Math. 316, Springer, 1973.
[167] L.E. Payne, Improperly posed problems in partial differential equations. Re gional Conference Series in Applied Math. no.22, SIAM, 1975. · Zbl 0302.35003
[168] L.E. Payne, On the stabilization of ill-posed Cauchy problems in nonlinea elasticity. Pages 1–10 in Problems of elastic stability and vibrations (Pitts burgh, 1981), Contemp. Math. 4, Amer. Math. Soc., 1981.
[169] Payne L.E. (1985) Improved stability estimates for classes of ill-posed Cauchy prob lems. Applicable Anal. 19: 63–74 · Zbl 0563.35080 · doi:10.1080/00036818508839534
[170] L.E. Payne, On stabilizing ill-posed Cauchy problems for the Navier-Stoke equations. Pages 261–271 in Differential equations with applications to math ematical physics, Math. Sci. Engineering 192, Academic Press, 1993.
[171] Payne L.E., Sather D. (1967) On some non-well-posed Cauchy problems for quasi linear equations of mixed type. Trans. Amer. Math. Soc. 128: 135–141 · Zbl 0154.11302 · doi:10.1090/S0002-9947-1967-0212407-1
[172] Payne L.E., Sather D. (1968) On an initial-boundary value problem for a class o degenerate elliptic operators. Ann. Mat. Pura Appl. 78: 323–338 · Zbl 0167.39902 · doi:10.1007/BF02415120
[173] Pham Minh Hien (2002) A stable marching difference scheme for an ill-posed Cauchy problem for the three-dimensional Laplace equation. Vietnam J Math. 30: 79–88 · Zbl 1022.65089
[174] P. Poláčik & V. Šverák, Zeros of complex caloric functions and singularities o complex viscous Burgers equation. ArXiv:math.AP/0612506v1 18 Dec 2006
[175] A.P. Prudnikov & Yu.A. Brychkov & O.I. Marichev, Integrals and series Vol. 1: Elementary Functions. New York, Gordon & Breach, 1986. · Zbl 0733.00004
[176] Pucci C. (1953) Studio col metodo delle differenze di un problema di Cauchy rel ativo ad equazioni alle derivate parziali del second’ordine di tipo parabolico (in Italian). Ann. Scuola Norm. Sup. Pisa 7: 205–215 · Zbl 0053.06803
[177] Pucci C. (1955) Sui problem di Cauchy non ben posti (in Italian). Atti Accad. Naz Lincei Rend. Cl. Sci. Fis. Mat. Natur. 18: 473–477 · Zbl 0065.07805
[178] Pucci C. (1958) Discussione del problema di Cauchy per le equazioni di tipo ellittico (in Italian). Ann. Mat. Pura Appl. (4) 46: 131–154 · Zbl 0092.10001 · doi:10.1007/BF02412913
[179] Pucci C. (1959) Alcune limitazioni per le soluzioni di equazioni di tipo parabolico (in Italian). Ann. Mat. Pura Appl. 48: 161–172 · Zbl 0092.09801 · doi:10.1007/BF02410663
[180] Ramm A.G. (1968) Numerical differentiation. Izv. Vyss. Ucebn. Zaved. Matematika 11: 131–134 · Zbl 0187.10504
[181] A.G. Ramm, On stable numerical differentiation. Aust. J. Math. Anal. Appl 5 (2008). · Zbl 1166.65320
[182] Ramm A.G., Smirnova A.B. (2001) On stable numerical differentiation. Math. Comp. 70: 1131–1153 · Zbl 0973.65015 · doi:10.1090/S0025-5718-01-01307-2
[183] Ranjbar Z., Eldén L. (2007) Numerical analysis of an ill-posed Cauchy problem for a convection-diffusion equation. Inverse Probl. Sci. Eng. 15: 191–211 · Zbl 1202.76134 · doi:10.1080/17415970600557299
[184] J. Rauch, Lectures on geometric optics. Pages 385–466 in Hyperbolic equations and Frequency Interactionsn (L. Caffarelli & W. E Editors). Amer. Math. Soc., 1999.
[185] Reinhardt H.J., Han H., Hao D.N. (1999) Stability and regularization of a discrete approximation to the Cauchy problem for Laplace equation. SIAM J. Numer. Anal. 36: 890–905 · Zbl 0928.35184 · doi:10.1137/S0036142997316955
[186] H.J. Reinhardt & F. Seiffarth, On the approximate solution of ill-posed Cauchy problems for parabolic differential equations. Pages 284–298 in Inverse problems: principles and applications in geophysics, technology, and medicine (Potsdam, 1993), Math. Res. 74, Akademie-Verlag, 1993.
[187] Reichel L. (1986) Numerical methods for analytic continuation and mesh generation. Constr. Approx. 2: 23–39 · Zbl 0601.65015 · doi:10.1007/BF01893415
[188] Rice J., Rosenblatt M. (1983) Smoothing splines: regression, derivatives and disconvolution. Ann. Statist. 11: 141–156 · Zbl 0535.41019 · doi:10.1214/aos/1176346065
[189] R.D. Richtmyer, Principles of advanced mathematical physics, vol. 1. Springer, 1978. · Zbl 0402.46001
[190] R.T. Rockafellar, Convex Analysis. Princeton Univ. Press, 1970. · Zbl 0193.18401
[191] Romanov V.G. (2008) A stability estimate for the solution to the ill-posed Cauchy problem for elasticity equations. J. Inverse Ill-Posed Problems 16: 615–623 · Zbl 1151.35098 · doi:10.1515/JIIP.2008.033
[192] Sabba Stefanescu I. (1986) On the stable analytic continuation with a condition of uniform boundedness. J. Math. Phys. 27: 2657–2686 · Zbl 0605.46022 · doi:10.1063/1.527285
[193] Sakalauskas E.I. (1984) The Galerkin-Tikhonov method of regularization in the problem of numerical differentiation (in Russian). Zh. Vychisl. Mat. I Mat. Fiz. 11: 1742–1747 · Zbl 0576.65009
[194] Saylor R. (1967) Numerical elliptic continuation. SIAM J. Numer. Anal. 4: 575–581 · Zbl 0161.35904 · doi:10.1137/0704052
[195] D. von Seggern, CRC Standard curves and surfaces. CRC Press, 1993. · Zbl 0772.00001
[196] Showalter R.E. (1974) The final value problem for evolution equations. J. Math. Anal. Appl. 47: 563–572 · Zbl 0296.34059 · doi:10.1016/0022-247X(74)90008-0
[197] R.E. Showalter, Quasi-reversibility of first and second order parabolic equations. Pages 76–84 in Research Notes in Mathematics, no.1, Pitman, 1975. · Zbl 0318.35073
[198] Smale S., Zhou D-X (2003) Estimating the approximation error in learning theory. Anal. Appl. (Singap.) 1: 17–41 · Zbl 1079.68089 · doi:10.1142/S0219530503000089
[199] Smale S., Zhou D-X (2004) Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41: 279–305 · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[200] Smale S., Zhou D-X (2005) Shannon sampling. II. Connections to learning theory Appl. Comput. Harmon. Anal. 19: 285–302 · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001
[201] Smale S., Zhou D-X (2007) Learning theory estimates via integral operators and their approximations. Constr. Approx. 26: 153–172 · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y
[202] S. Steinberg, Some unusual ill-posed Cauchy problems and their applications Pages 17–23 in Improperly posed boundary value problems (Conf. Univ. New Mexico, 1974), Res. Notes in Math. 1, Pitman, 1975.
[203] Strom T., Lyness J.N. (1975) On numerical differentiation. BIT 15: 314–322 · Zbl 0311.65014 · doi:10.1007/BF01933664
[204] Surova N.S. (1977) An inverstigation of the problem of reconstructing a derivativ by using an optimal regularizing integral operator. Numer. Methods Pro gramming 1: 30–34 · Zbl 0993.65505
[205] G. Talenti, Sui problemi mal posti (in Italian). Bollettino U.M.I. 15-A (1978) 1–29. · Zbl 0402.35009
[206] Tikhonov A.N. (1944) On stability of inverse problems (in Russian). Dokl. Akad Nauk. SSSR 39: 195–198
[207] Tikhonov A.N. (1963) On the solution of ill-posed problems and the method o regularization (in Russian). Dokl. Akad. Nauk. SSSR 151: 501–504
[208] Tikhonov A.N. (1963) On the regularization of ill-posed problems (in Russian) Dokl. Akad. Nauk. SSSR 153: 49–52
[209] Tikhonov A.N. (1965) Improperly posed problems of linear algebra and a stabl method for their solution (in Russian). Dokl. Akad. Nauk SSSR 163: 591–594
[210] Tikhonov A.N. (1968) On methods of solving incorrect problems. Translated from the Russian original in Amer. Math. Soc. Transl. (2) 70: 222–224
[211] A.N. Tikhonov & V.Ya. Arsenin, Solution of Ill-Posed Problems.Wiley, 1977
[212] A.N. Tikhonov & A.V. Goncharsky & V.V. Stepanov & A.G. Yagola, Nu merical methods for the solution of ill-posed problems. Mathematics and it Applications 328, Kluwer, 1995. · Zbl 0831.65059
[213] A.N. Tikhonov & A.S. Leonov & A.G. Yagola, Nonlinear ill-posed prob lems, vol. 1 and 2, Applied Mathematics and Mathematical Computation 14, Chapman & Hall, 1998. · Zbl 0920.65038
[214] D.D. Trong & N.H. Tuan, Stabilized quasi-reversibility method or a class o nonlinear ill-posed problems. Electron. J. Differential Equations 84 (2008 pp. 35–55. · Zbl 1171.35485
[215] M.M. Uzakov, Stability in multidimensional problems of analytic continuation (in Russian). Questions of well-posedness and methods for the investigation of inverse problems, 129–141, Vychisl. Tsentr, Novosibirsk, 1986.
[216] Vasin V.V. (1973) The stable evaluation of a derivative in space C(, (in Russian). USSR Computational Math. and Math. Phys 13: 16–24 · Zbl 0306.65007 · doi:10.1016/0041-5553(73)90002-5
[217] V. Vapnik, Structure of statistical learning theory. John Wiley 1996.
[218] V. Vapnik, Statistical learning theory. John Wiley 1998. · Zbl 0935.62007
[219] V. Vapnik, The nature of statistical learning theory. Springer-Verlag 2000. · Zbl 0934.62009
[220] V. Vapnik, Estimation of dependence based on empirical data. Springer-Verlag 2006. · Zbl 1118.62002
[221] Vessella S. (1999) A continuous dependence result in the analytic continuation problem. Forum Math. 11: 695–703 · Zbl 0933.35192 · doi:10.1515/form.1999.020
[222] N.A. Vrobeva & L.S. Frank & L.A. udov, Difference methods of solution of an ill-posed Cauchy problem for the three-dimensional Laplace equation (in Russian). Pages 147–155 in Computing methods and programming 11: numerical methods in gas dynamics, Izdat. Moskow Univ., 1968.
[223] Vu Kim Tuan (2000) Stable analytic continuation using hypergeometric summation. Inverse Problems 16: 75–87 · Zbl 0980.30003 · doi:10.1088/0266-5611/16/1/307
[224] Walter G.G. (1989) An alternative approach to ill-posed problems. J. Integral Equations Appl. 1: 287–301 · Zbl 0675.65052 · doi:10.1216/JIE-1988-1-2-287
[225] Wang J. (2007) Wavelet approach to numerical differentiation of noisy functions. Commun. Pure Appl. Anal. 6: 873–897 · Zbl 1134.42343 · doi:10.3934/cpaa.2007.6.873
[226] B.Ts. Zhamsoev, Estimates of stability in problems of analytic continuation (in Russian). Methods for solving inverse problems, 52–64, Vychisl. Tsentr, Novosibirsk, 1983.
[227] D. Zwillinger, Handbook of differential equations. Academic Press, 1984. · Zbl 0678.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.