×

Incompressible limit of the Ericksen-Leslie parabolic-hyperbolic liquid crystal model. (English) Zbl 1531.76007

Authors’ abstract: J. L. Ericksen [Arch. Ration. Mech. Anal. 9, 371–378 (1962; Zbl 0105.23403)] and F. M. Leslie [Arch. Ration. Mech. Anal. 28, 265–283 (1968; Zbl 0159.57101)] proposed a hydrodynamic model for liquid crystals in the format of conservation laws in the 1960s. Their original model includes inertial and compressibility effects, which makes the model a coupled parabolic-hyperbolic system. In this paper we build up the connection between the compressible and incompressible parabolic-hyperbolic liquid crystal model in the framework of classical solutions. We first derive the scaled Ericksen-Leslie system with dimensionless numbers, including Mach, Reynolds, and Ericksen numbers. In particular, we introduce the so-called inertial constant \(\chi\) which characterizes the inertial effect of the liquid crystal molecular. Next, we establish the energy estimates uniform in the Mach number \(\epsilon\) for both the compressible system and its time-derivative system with small data. Then, we pass to the limit \(\epsilon\to 0\) in the compressible system, so that we establish the global classical solution of the incompressible system by the compactness arguments. Moreover, we also obtain the convergence rates associated with \(L^2\)-norm in the case of well-prepared initial data. This is the first result on the incompressible limit of the compressible parabolic-hyperbolic liquid crystal model which confirms the relations of different parabolic-hyperbolic liquid crystal models rigorously.

MSC:

76A15 Liquid crystals
35Q35 PDEs in connection with fluid mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Adams, RA; Fournier, JF, Sobolev Spaces. Pure and Applied Mathematics (Amsterdam) (2003), Amsterdam: Elsevier/Academic Press, Amsterdam
[2] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180, 1-73 (2006) · Zbl 1108.76061 · doi:10.1007/s00205-005-0393-2
[3] Bie, Q.; Cui, H.; Wang, Q.; Yao, Z-A, Incompressible limit for the compressible flow of liquid crystals in Lp type critical Besov spaces, Discrete Contin. Dyn. Syst., 38, 6, 2879-2910 (2018) · Zbl 1397.35195 · doi:10.3934/dcds.2018124
[4] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models Applied Mathematical Sciences (2013), New York: Springer, New York · Zbl 1286.76005
[5] Cai, Y.; Wang, W., Global well-posedness for the three dimensional simplified inertial Ericksen-Leslie system near equilibrium, preprint, J. Funct. Anal., 279, 2 (2020) · Zbl 1437.35567 · doi:10.1016/j.jfa.2020.108521
[6] Danchin, R., Low Mach number limit for viscous compressible flows, M2AN Math. Model. Numer. Anal., 39, 459-475 (2005) · Zbl 1080.35067 · doi:10.1051/m2an:2005019
[7] De Anna, F.; Zarnescu, A., Global well-posedness and twist-wave solutions for the inertial Qian-Sheng model of liquid crystals, J. Differ. Equ., 264, 2, 1080-1118 (2018) · Zbl 1393.35165 · doi:10.1016/j.jde.2017.09.031
[8] de Gennes, PG, The Physics of Liquid Crystals (1974), Oxford: Oxford University Press, Oxford · Zbl 0295.76005
[9] Ding, S.; Huang, J.; Wen, H.; Zi, R., Incompressible limit of the compressible nematic liquid crystal flow, J. Funct. Anal., 264, 1711-1756 (2013) · Zbl 1262.76011 · doi:10.1016/j.jfa.2013.01.011
[10] Ericksen, JL, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5, 23-34 (1961) · doi:10.1122/1.548883
[11] Ericksen, JL, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9, 371-378 (1962) · Zbl 0105.23403 · doi:10.1007/BF00253358
[12] Feireisl, E.; Rocca, E.; Schimperna, G.; Zarnescu, A., On a hyperbolic system arising in liquid crystals modeling, J. Hyperbolic Differ. Equ., 15, 1, 15-35 (2018) · Zbl 1388.76023 · doi:10.1142/S0219891618500029
[13] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics (2017), Cham: Birkhäuser/Springer, Cham · Zbl 1432.76002
[14] Grenier, E., Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9), 76, 6, 477-498 (1997) · Zbl 0885.35090 · doi:10.1016/S0021-7824(97)89959-X
[15] Hao, YH; Liu, XG, Incompressible limit of a compressible liquid crystals system, Acta Math. Sci., 33, 781-796 (2013) · Zbl 1299.76211 · doi:10.1016/S0252-9602(13)60038-7
[16] Hieber, M., Prüss, J.W.: Modeling and analysis of the Ericksen-Leslie equations for nematic liquid crystal flows. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1075-1134, Springer, Cham (2018)
[17] Huang, JX; Jiang, N.; Luo, Y-L; Zhao, LF, Small data global regularity for 3-D Ericksen-Leslie’s hyperbolic liquid crystal model without kinematic transport, SIAM J. Math. Anal., 53, 1, 530-573 (2021) · Zbl 1460.35287 · doi:10.1137/20M1322625
[18] Huang, JX; Jiang, N.; Luo, Y-L; Zhao, LF, Small data global regularity for simplified 3-D Ericksen-Leslie’s compressible hyperbolic liquid crystal model, J. Hyperbolic Differ. Equ., 19, 4, 717-773 (2022) · Zbl 1517.35029 · doi:10.1142/S0219891622500199
[19] Jiang, N.; Luo, Y-L, On well-posedness of Ericksen-Leslie’s hyperbolic incompressible liquid crystal model, SIAM J. Math. Anal., 51, 403-434 (2019) · Zbl 1426.35190 · doi:10.1137/18M1167310
[20] Jiang, N., Luo, Y.-L.: The zero inertia limit of Ericksen-Leslie’s model for liquid crystals. J. Funct. Anal.282(1), Paper No. 109280 (2022) · Zbl 1477.35016
[21] Jiang, N.; Luo, Y-L; Tang, SJ, Zero inertia density limit for the hyperbolic system of Ericksen-Leslie’s liquid crystal flow with a given velocity, Nonlinear Anal. Real World Appl., 45, 590-608 (2019) · Zbl 1415.35191 · doi:10.1016/j.nonrwa.2018.07.023
[22] Jiang, N.; Luo, Y-L; Tang, SJ, On well-posedness of Ericksen-Leslie’s parabolic-hyperbolic liquid crystal model in compressible flow, Math. Models Methods Appl. Sci., 29, 121-183 (2019) · Zbl 1414.35168 · doi:10.1142/S0218202519500052
[23] Jiang, N.; Luo, Y-L; Tang, SJ; Zarnescu, A., A scaling limit from the wave map to the heat flow into \({\mathbb{S} }^2\), Commun. Math. Sci., 17, 2, 353-375 (2019) · Zbl 1418.35276 · doi:10.4310/CMS.2019.v17.n2.a3
[24] Jiang, S.; Ju, Q.; Li, F., Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297, 371-400 (2010) · Zbl 1195.35253 · doi:10.1007/s00220-010-0992-0
[25] Jiang, S.; Ju, Q.; Li, F., Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48, 1, 302-319 (2016) · Zbl 1338.35367 · doi:10.1137/15M102842X
[26] Jiang, S.; Ju, Q.; Li, F.; Xin, Z-P, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259, 384-420 (2014) · Zbl 1334.35216 · doi:10.1016/j.aim.2014.03.022
[27] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[28] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Commun. Pure Appl. Math., 35, 5, 629-651 (1982) · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[29] Leslie, FM, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28, 265-283 (1968) · Zbl 0159.57101 · doi:10.1007/BF00251810
[30] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications 3, The Clarendon Press, Oxford University Press, New York (1996) · Zbl 0866.76002
[31] Lions, P-L; Masmoudi, N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77, 585-627 (1998) · Zbl 0909.35101 · doi:10.1016/S0021-7824(98)80139-6
[32] Liu, Q.; Dou, C., Incompressible limit of the compressible nematic liquid crystal flows in a bounded domain with perfectly conducting boundary, J. Math. Anal. Appl., 479, 2, 1417-1440 (2019) · Zbl 1421.35282 · doi:10.1016/j.jmaa.2019.04.007
[33] Lin, F-H; Liu, C., Static and dynamic theories of liquid crystals, J. Partial Differ. Equ., 14, 4, 289-330 (2001) · Zbl 1433.82014
[34] Lin, F.; Wang, C., Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372, 2029, 20130361 (2014) · Zbl 1353.76004
[35] Masmoudi, N.: Examples of singular limits in hydrodynamics In: Dafermos, M., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. III, pp. 195-275, Elsevier/North-Holland, Amsterdam (2007) · Zbl 1205.35230
[36] Métivier, G.; Schochet, S., The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158, 1, 61-90 (2001) · Zbl 0974.76072 · doi:10.1007/PL00004241
[37] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, 115-162 (1959) · Zbl 0088.07601
[38] Qi, G.; Xu, J., The low Mach number limit for the compressible flow of liquid crystals, Appl. Math. Comput., 297, 39-49 (2017) · Zbl 1411.35230
[39] Simon, J., Compact sets in the space \(L^p (0, T;B)\), Ann. Mat. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[40] Schochet, S., The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Commun. Math. Phys., 104, 1, 49-75 (1986) · Zbl 0612.76082 · doi:10.1007/BF01210792
[41] Schochet, S., Fast singular limits of hyperbolic PDEs, J. Differ. Equ., 114, 2, 476-512 (1994) · Zbl 0838.35071 · doi:10.1006/jdeq.1994.1157
[42] Simon, J., Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21, 1093-1117 (1990) · Zbl 0702.76039 · doi:10.1137/0521061
[43] Stewart, I., The Static and Dynamic Continuum Theory of Liquid Crystals (2004), London, New York: Taylor & Francis, London, New York
[44] Ukai, S., The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26, 2, 323-331 (1986) · Zbl 0618.76074
[45] Wang, DH; Yu, C., Incompressible limit for the compressible flow of liquid crystals, J. Math. Fluid Mech., 16, 771-786 (2014) · Zbl 1309.35094 · doi:10.1007/s00021-014-0185-2
[46] Wu, H.; Xu, X.; Liu, C., On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability, Arch. Ration. Mech. Anal., 208, 1, 59-107 (2013) · Zbl 1320.76010 · doi:10.1007/s00205-012-0588-2
[47] Wu, H.; Xu, X.; Zarnescu, A., Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals, Arch. Ration. Mech. Anal., 231, 2, 1217-1267 (2019) · Zbl 1421.76016 · doi:10.1007/s00205-018-1297-2
[48] Yang, X., Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a bounded domain, Nonlinear Anal., 120, 118-126 (2015) · Zbl 1328.76080 · doi:10.1016/j.na.2015.03.010
[49] Zeng, L.; Ni, G.; Ai, X., Low Mach number limit of global solutions to 3-D compressible nematic liquid crystal flows with Dirichlet boundary condition, Math. Methods Appl. Sci., 42, 6, 2053-2068 (2019) · Zbl 1417.35149 · doi:10.1002/mma.5499
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.