×

Demonstration of the no-hiding theorem on the 5-qubit IBM quantum computer in a category-theoretic framework. (English) Zbl 1502.68125

Summary: The quantum no-hiding theorem, first proposed by S. L. Braunstein and A. K. Pati [Phys. Rev. Lett. 98, No. 8, Article ID 080502, 4 p. (2007; Zbl 1228.83062)], was verified experimentally by J. R. Samal, A. K. Pati and A. Kumar [“Experimental test of the quantum no-hiding theorem”, Phys. Rev. Lett. 106, No. 8, Article ID 080401, 4 p. (2011; doi:10.1103/PhysRevLett.106.080401)] using NMR quantum processor. Till then, this fundamental test has not been explored in any other experimental architectures. Here, we demonstrate the above no-hiding theorem using the IBM 5Q quantum processor. Categorical algebra developed by B. Coecke and R. Duncan [New J. Phys. 13, No. 4, Article ID 043016, 85 p. (2011; Zbl 1448.81025)] has been used for better visualization of the no-hiding theorem by analyzing the quantum circuit using the ZX calculus. The experimental results confirm the recovery of missing information by the application of local unitary operations on the ancillary qubits.

MSC:

68Q12 Quantum algorithms and complexity in the theory of computing
18M40 Dagger categories, categorical quantum mechanics
81P68 Quantum computation

References:

[1] IBM Q.: http://research.ibm.com/ibm-q/
[2] Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett-Garg test that addresses the clumsiness loophole. Phys. Rev. A 95(3), 032131 (2017) · doi:10.1103/PhysRevA.95.032131
[3] Alsina, D., Latorre, J.L.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016) · doi:10.1103/PhysRevA.94.012314
[4] Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papenbrock, T., Pooser, R.C., Dean, D.J., Lougovski, P.: Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018) · doi:10.1103/PhysRevLett.120.210501
[5] Choo, K., von Keyserlingk, C.W., Regnault, N., Neupert, T.: Measurement of the entanglement spectrum of a symmetry-protected topological state using the IBM quantum computer. Phys. Rev. Lett. 121, 086808 (2018) · doi:10.1103/PhysRevLett.121.086808
[6] Zhao, Z., Kerstjens, A.P., Rebentrost, P., Wittek, P.: Bayesian deep learning on a quantum computer. arXiv:1806.11463
[7] Manabputra, Behera, B.K., Panigrahi, P.K.: A simulational model for witnessing quantum effects of gravity using IBM quantum computer. arXiv:1806.10229 (2018)
[8] Viyuela, O., Rivas, A., Gasparinetti, S., Wallraff, A., Filipp, S., Martin-Delgado, M.A.: Observation of topological Uhlmann phases with superconducting qubits. npj Quantum Inf. 4, 10 (2018) · doi:10.1038/s41534-017-0056-9
[9] Kapil, M., Behera, B.K., Panigrahi, P.K.: Quantum simulation of Klein Gordon equation and observation of Klein paradox in IBM quantum computer. arXiv:1807.00521 (2018)
[10] Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2017) · Zbl 1382.81071 · doi:10.1007/s11128-017-1762-0
[11] Biswas, S., Razdan, S., Behera, B.K., Panigrahi, P.K.: Realization of counterfactual quantum cryptography using IBM’s quantum computer. https://doi.org/10.13140/RG.2.2.30090.52160 (2018)
[12] Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017) · doi:10.1088/2058-9565/aa5c73
[13] Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf Process 17, 153 (2018) · Zbl 1448.81276 · doi:10.1007/s11128-018-1920-z
[14] Vuillot, C.: Is error detection helpful on IBM 5Q chips? Quantum Inf. Comput. 18, 0949-0964 (2018)
[15] Harper, R., Flammia, S.: Fault tolerance in the IBM Q Experience. arXiv:1806.02359 (2018)
[16] Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process. 16, 76 (2017) · Zbl 1373.81119 · doi:10.1007/s11128-017-1526-x
[17] Sisodia, M., Shukla, A., Pathak, A.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860 (2017) · doi:10.1016/j.physleta.2017.09.050
[18] Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017) · doi:10.1007/s11128-017-1744-2
[19] Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016) · Zbl 1456.81270 · doi:10.1088/1367-2630/18/7/073004
[20] Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. Proc. Natl. Acad. Sci. 114(13), 3305-3310 (2017) · doi:10.1073/pnas.1618020114
[21] Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W- and GHZ-class of states. arXiv:1810.00874
[22] Devitt, J.D.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016) · doi:10.1103/PhysRevA.94.032329
[23] Figgatt, C., Landsmam, K.A., Wright, K., Monroe, C.: Experimental comparison of two quantum computers
[24] Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982) · Zbl 1369.81022 · doi:10.1038/299802a0
[25] Pati, A.K., Braunstein, S.L.: Impossibility of deleting an unknown quantum state. Nature 404, 164-165 (2000)
[26] Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the Black-Hole information paradox. Phys. Rev. Lett. 98, 080502 (2016) · Zbl 1228.83062 · doi:10.1103/PhysRevLett.98.080502
[27] Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754-758 (2006) · doi:10.1038/nphys444
[28] Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[29] Ambainis, A., Mosca, M., Tapp, A., Wolf, R.D.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (2000)
[30] Samal, J.R, Pati, A.K,, Kumar, A.: Experimental test of the quantum no-hiding theorem. Phys. Rev. Lett. 106: 080401 (2011)
[31] Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans. Am. Inst. Electr. Eng. 45, 109-115 (1926)
[32] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656-715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[33] Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and diagrammatics. New J. Phys. 13, 043016 (2011) · Zbl 1448.81025 · doi:10.1088/1367-2630/13/4/043016
[34] Kissinger, Aleks; Zamdzhiev, Vladimir, Quantomatic: A Proof Assistant for Diagrammatic Reasoning, 326-336 (2015), Cham · Zbl 1465.68288 · doi:10.1007/978-3-319-21401-6_22
[35] Samson, A.: No-cloning in categorical quantum mechanics. arXiv:0910.2401 · Zbl 1192.81013
[36] Srivastava, D.P., Sahni, V., Satsangi, P.S.: Graph-theoretic quantum system modelling for information/computation processing circuits. Int. J. Gen. Syst. 40(8), 777-804 (2011) · Zbl 1245.81017 · doi:10.1080/03081079.2011.602016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.