×

Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows. (English) Zbl 1526.76038

Summary: The aim of this paper is twofold: the first aim is to formulate and validate a multi-scale discrete Boltzmann method (DBM) based on density functional kinetic theory for thermal multiphase flow systems, ranging from continuum to transition flow regime; the second aim is to present some new insights into the thermo-hydrodynamic non-equilibrium (THNE) effects in the phase separation process. Methodologically, for bulk flow, DBM includes three main pillars: (i) the determination of the fewest kinetic moment relations, which are required by the description of significant THNE effects beyond the realm of continuum fluid mechanics; (ii) the construction of an appropriate discrete equilibrium distribution function recovering all the desired kinetic moments; (iii) the detection, description, presentation and analysis of THNE based on the moments of the non-equilibrium distribution (\(f-f^{(eq)}\)). The incorporation of appropriate additional higher-order thermodynamic kinetic moments considerably extends the DBM’s capability of handling larger values of the liquid-vapour density ratio, curbing spurious currents, and ensuring mass/momentum/energy conservation. Compared with the DBM with only first-order THNE [Y. Gan et al., Soft Matt. 11, No. 26, 5336–5345 (2015; doi:10.1039/C5SM01125F)], the model retrieves kinetic moments beyond the third-order super-Burnett level, and is accurate for weak, moderate and strong THNE cases even when the local Knudsen number exceeds 1/3. Physically, the ending point of the linear relation between THNE and the concerned physical parameter provides a distinct criterion to identify whether the system is near or far from equilibrium. Besides, the surface tension suppresses the local THNE around the interface, but expands the THNE range and strengthens the THNE intensity away from the interface through interface smoothing and widening.

MSC:

76M28 Particle methods and lattice-gas methods
76T99 Multiphase and multicomponent flows
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] Aarts, D.G.A.L., Schmidt, M. & Lekkerkerker, H.N.W.2004Direct visual observation of thermal capillary waves. Science304 (5672), 847-850.
[2] Ambruş, V.E., Busuioc, S., Wagner, A.J., Paillusson, F. & Kusumaatmaja, H.2019Multicomponent flow on curved surfaces: a vielbein lattice Boltzmann approach. Phys. Rev. E100 (6), 063306.
[3] Ambruş, V.E. & Sofonea, V.2016Lattice Boltzmann models based on half-range Gauss-Hermite quadratures. J.Comput. Phys.316, 760-788. · Zbl 1349.76660
[4] Ansumali, S., Karlin, I.V., Arcidiacono, S., Abbas, A. & Prasianakis, N.I.2007Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy. Phy. Rev. Lett.98 (12), 124502.
[5] Bao, Y., Qiu, R., Zhou, K., Zhou, T., Weng, Y., Lin, K. & You, Y.2022Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects. Phys. Fluids34 (4), 046109.
[6] Bedeaux, D.1986Nonequilibrium thermodynamics and statistical physics of surfaces. Adv. Chem. Phys.64, 47-109.
[7] Benzi, R., Biferale, L., Sbragaglia, M., Succi, S. & Toschi, F.2006Mesoscopic two-phase model for describing apparent slip in micro-channel flows. Europhys. Lett.74 (4), 651.
[8] Benzi, R., Succi, S. & Vergassola, M.1992The lattice Boltzmann equation: theory and applications. Phys. Rep.222 (3), 145-197.
[9] Bernaschi, M., Melchionna, S. & Succi, S.2019Mesoscopic simulations at the physics-chemistry-biology interface. Rev. Mod. Phys.91 (2), 025004.
[10] Bhairapurada, K., Denet, B. & Boivin, P.2022A lattice-Boltzmann study of premixed flames thermo-acoustic instabilities. Combust. Flame240, 112049.
[11] Bhatnagar, P.L., Gross, E.P. & Krook, M.1954A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.94 (3), 511. · Zbl 0055.23609
[12] Biferale, L., Perlekar, P., Sbragaglia, M. & Toschi, F.2012Convection in multiphase fluid flows using lattice Boltzmann methods. Phys. Rev. Lett.108 (10), 104502.
[13] Brennen, C.E.2005Fundamentals of Multiphase Flow. Cambridge University Press. · Zbl 1127.76001
[14] Bu, W., Kim, D. & Vaknin, D.2014Density profiles of liquid/vapor interfaces away from their critical points. J.Phys. Chem. C118 (23), 12405-12409.
[15] Busuioc, S., Ambruş, V.E., Biciuşcă, T. & Sofonea, V.2020Two-dimensional off-lattice Boltzmann model for van der Waals fluids with variable temperature. Comput. Maths Applics.79 (1), 111-140. · Zbl 1443.76167
[16] Carenza, L.N., Gonnella, G., Marenduzzo, D. & Negro, G.2019Rotation and propulsion in 3D active chiral droplets. Proc. Natl Acad. Sci.116 (44), 22065-22070.
[17] Carnahan, N.F. & Starling, K.E.1969Equation of state for nonattracting rigid spheres. J.Chem. Phys.51 (2), 635-636.
[18] Cates, M.E., Fielding, S.M., Marenduzzo, D., Orlandini, E. & Yeomans, J.M.2008Shearing active gels close to the isotropic-nematic transition. Phys. Rev. Lett.101 (6), 068102.
[19] Chai, Z., Huang, C., Shi, B. & Guo, Z.2016A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Intl J. Heat Mass Transfer98, 687-696.
[20] Chai, Z., Liang, H., Du, R. & Shi, B.2019A lattice Boltzmann model for two-phase flow in porous media. SIAM J. Sci. Comput.41 (4), B746-B772. · Zbl 1421.76179
[21] Chai, Z. & Shi, B.2008A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model.32 (10), 2050-2058. · Zbl 1145.82344
[22] Chapman, S. & Cowling, T.G.1990The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.
[23] Chen, X., Chai, Z., Shang, J. & Shi, B.2021bMultiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation. Phys. Rev. E104 (3), 035308.
[24] Chen, Y. & Deng, Z.2017Hydrodynamics of a droplet passing through a microfluidic T-junction. J.Fluid Mech.819, 401-434. · Zbl 1376.93004
[25] Chen, S. & Doolen, G.D.1998Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.30 (1), 329-364. · Zbl 1398.76180
[26] Chen, L., Kang, Q., Tang, Q., Robinson, B.A., He, Y. & Tao, W.2015Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Intl J. Heat Mass Transfer85, 935-949.
[27] Chen, L., Kang, Q. & Tao, W.2021aPore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells. Intl J. Hydrogen Energy46 (24), 13283-13297.
[28] Chen, Z., Shu, C., Yang, L.M., Zhao, X. & Liu, N.Y.2021cPhase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Phys. Rev. E103 (2), 023308.
[29] Chen, T., Wu, L., Wang, L. & Chen, S.2022b Rarefaction effects in head-on collision of two identical droplets. Preprint. arXiv:2205.03604.
[30] Chen, F., Xu, A., Zhang, Y., Gan, Y., Liu, B. & Wang, S.2022aDelineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers. Front. Phys.17 (3), 33505.
[31] Chen, F., Xu, A., Zhang, Y. & Zeng, Q.2020Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability. Phys. Fluids32 (10), 104111.
[32] Chen, Q., Zhang, X. & Zhang, J.2013Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes. Phys. Rev. E88 (3), 033304.
[33] Chen, W.F., Zhao, W.W., Jiang, Z.Z. & Liui, H.L.2016A review of moment equations for rarefied gas dynamics. Phys. Gases1 (5), 9-24.
[34] Chen, X., Zhong, C. & Yuan, X.2011Lattice Boltzmann simulation of cavitating bubble growth with large density ratio. Comput. Maths Applics.61 (12), 3577-3584. · Zbl 1225.76225
[35] Chikatamarla, S.S., Ansumali, S. & Karlin, I.V.2006Grad’s approximation for missing data in lattice Boltzmann simulations. Europhys. Lett.74 (2), 215.
[36] Chikatamarla, S.S. & Karlin, I.V.2009Lattices for the lattice Boltzmann method. Phys. Rev. E79 (4), 046701.
[37] Coclite, A., Gonnella, G. & Lamura, A.2014Pattern formation in liquid-vapor systems under periodic potential and shear. Phys. Rev. E89 (6), 063303.
[38] Corberi, F., Gonnella, G. & Lamura, A.1998Spinodal decomposition of binary mixtures in uniform shear flow. Phys. Rev. Lett.81 (18), 3852.
[39] Coreixas, C., Wissocq, G., Puigt, G., Boussuge, J. & Sagaut, P.2017Recursive regularization step for high-order lattice Boltzmann methods. Phys. Rev. E96 (3), 033306.
[40] Czelusniak, L.E., Mapelli, V.P., Guzella, M.S., Cabezas-Gómez, L. & Wagner, A.J.2020Force approach for the pseudopotential lattice Boltzmann method. Phys. Rev. E102 (3), 033307.
[41] Dai, R., Li, W., Mostaghimi, J., Wang, Q. & Zeng, M.2020On the optimal heat source location of partially heated energy storage process using the newly developed simplified enthalpy based lattice Boltzmann method. Appl. Energy275, 115387.
[42] Doostmohammadi, A., Adamer, M.F., Thampi, S.P. & Yeomans, J.M.2016Stabilization of active matter by flow-vortex lattices and defect ordering. Nat. Commun.7 (1), 10557.
[43] Du, R. & Liu, Z.2020A lattice Boltzmann model for the fractional advection-diffusion equation coupled with incompressible Navier-Stokes equation. Appl. Math. Lett.101, 106074. · Zbl 1431.35097
[44] Duan, Y. & Liu, R.2007Lattice Boltzmann model for two-dimensional unsteady Burgers’ equation. J.Comput. Appl. Maths206 (1), 432-439. · Zbl 1115.76064
[45] Dupin, M., Halliday, I. & Care, C.2006A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med. Engng Phys.28 (1), 13-18.
[46] Elton, B.H.1996Comparisons of lattice Boltzmann and finite difference methods for a two-dimensional viscous Burgers equation. SIAM J. Sci. Comput.17 (4), 783-813. · Zbl 0924.65082
[47] Evans, R.1979The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys.28 (2), 143-200.
[48] Fakhari, A. & Lee, T.2013Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers. Phys. Rev. E87 (2), 023304.
[49] Falcucci, G., Amati, G., Fanelli, P., Krastev, V.K., Polverino, G., Porfiri, M. & Succi, S.2021Extreme flow simulations reveal skeletal adaptations of deep-sea sponges. Nature595 (7868), 537-541.
[50] Falcucci, G., Chiatti, G., Succi, S., Mohamad, A.A. & Kuzmin, A.2009Rupture of a ferrofluid droplet in external magnetic fields using a single-component lattice Boltzmann model for nonideal fluids. Phys. Rev. E79 (5), 056706.
[51] Falcucci, G., Jannelli, E., Ubertini, S. & Succi, S.2013Direct numerical evidence of stress-induced cavitation. J.Fluid Mech.728, 362-375. · Zbl 1291.76321
[52] Fei, L., Qin, F., Wang, G., Luo, K.H., Derome, D. & Carmeliet, J.2022Droplet evaporation in finite-size systems: theoretical analysis and mesoscopic modeling. Phys. Rev. E105 (2), 025101.
[53] Fei, L., Yang, J., Chen, Y., Mo, H. & Luo, K.H.2020Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Phys. Fluids32 (10), 103312.
[54] Frezzotti, A.2011Boundary conditions at the vapor-liquid interface. Phys. Fluids23 (3), 030609. · Zbl 1308.76282
[55] Frezzotti, A., Barbante, P. & Gibelli, L.2019Direct simulation Monte Carlo applications to liquid-vapor flows. Phys. Fluids31 (6), 062103.
[56] Frezzotti, A., Gibelli, L., Lockerby, D.A. & Sprittles, J.E.2018Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum. Phys. Rev. Fluids3 (5), 054001.
[57] Frezzotti, A., Gibelli, L. & Lorenzani, S.2005Mean field kinetic theory description of evaporation of a fluid into vacuum. Phys. Fluids17 (1), 012102. · Zbl 1187.76165
[58] Frezzotti, A. & Rossi, M.2012Slip effects at the vapor-liquid boundary. AIP Conf. Proc.1501 (1), 903-910.
[59] Gan, Y., Xu, A., Zhang, G. & Li, Y.2012aPhysical modeling of multiphase flow via lattice Boltzmann method: numerical effects, equation of state and boundary conditions. Front. Phys.7 (4), 481-490.
[60] Gan, Y., Xu, A., Zhang, G., Li, Y. & Li, H.2011Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization. Phys. Rev. E84 (4), 046715.
[61] Gan, Y.B., Xu, A.G., Zhang, G.C., Lin, C.D. & Liu, Z.P.2019Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows. Front. Phys.14 (4), 43602.
[62] Gan, Y., Xu, A., Zhang, G. & Succi, S.2015Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. Soft Matt.11 (26), 5336-5345.
[63] Gan, Y., Xu, A., Zhang, G. & Yang, Y.2013Lattice BGK kinetic model for high-speed compressible flows: hydrodynamic and nonequilibrium behaviors. Europhys. Lett.103 (2), 24003.
[64] Gan, Y., Xu, A., Zhang, G., Yu, X. & Li, Y.2008Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Physica A387 (8-9), 1721-1732.
[65] Gan, Y., Xu, A., Zhang, G., Zhang, P. & Li, Y.2012bLattice Boltzmann study of thermal phase separation: effects of heat conduction, viscosity and Prandtl number. Europhys. Lett.97 (4), 44002.
[66] Gan, Y., Xu, A., Zhang, G., Zhang, Y. & Succi, S.2018Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys. Rev. E97 (5), 053312.
[67] Gao, W. & Sun, Q.2014Evaluation of BGK-type models of the Boltzmann equation. AIP Conf. Proc.1628 (1), 84-91.
[68] Gonnella, G., Lamura, A., Piscitelli, A. & Tiribocchi, A.2010Phase separation of binary fluids with dynamic temperature. Phys. Rev. E82 (4), 046302.
[69] Gonnella, G., Lamura, A. & Sofonea, V.2007Lattice Boltzmann simulation of thermal nonideal fluids. Phys. Rev. E76 (3), 036703.
[70] Gonnella, G., Orlandini, E. & Yeomans, J.M.1997Spinodal decomposition to a lamellar phase: effects of hydrodynamic flow. Phys. Rev. Lett.78 (9), 1695.
[71] Gunstensen, A.K., Rothman, D.H., Zaleski, S. & Zanetti, G.1991Lattice Boltzmann model of immiscible fluids. Phys. Rev. A43 (8), 4320-4327.
[72] Guo, Z. & Shu, C.2013Lattice Boltzmann Method and its Applications in Engineering. World Scientific Publishing. · Zbl 1278.76001
[73] Gurtin, M.E. & Voorhees, P.W.1996The thermodynamics of evolving interfaces far from equilibrium. Acta Mater.44 (1), 235-247.
[74] He, X., Chen, S. & Zhang, R.1999A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J.Comput. Phys.152 (2), 642-663. · Zbl 0954.76076
[75] He, Y. & Lin, X.2020Numerical analysis and simulations for coupled nonlinear Schrödinger equations based on lattice Boltzmann method. Appl. Maths Lett.106, 106391. · Zbl 1439.65128
[76] He, Y., Liu, Q., Li, Q. & Tao, W.2019Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: a review. Intl J. Heat Mass Transfer129, 160-197.
[77] He, B., Qin, C., Chen, W. & Wen, B.2022Numerical simulation of pulmonary airway reopening by the multiphase lattice Boltzmann method. Comput. Maths Applics.108, 196-205.
[78] He, X., Shan, X. & Doolen, G.D.1998Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E57 (1), R13-R16.
[79] He, Q., Tao, S., Yang, X., Lu, W. & He, Z.2021Discrete unified gas kinetic scheme simulation of microflows with complex geometries in Cartesian grid. Phys. Fluids33 (4), 042005.
[80] Holway, L.H. Jr.1966New statistical models for kinetic theory: methods of construction. Phys. Fluids9 (9), 1658-1673.
[81] Hu, Y., Li, D. & Niu, X.2018Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows. Phys. Rev. E98 (3), 033301.
[82] Huang, Q., Tian, F.B., Young, J. & Lai, J.C.S.2021aTransition to chaos in a two-sided collapsible channel flow. J.Fluid Mech.926, A15. · Zbl 1496.76063
[83] Huang, R., Wu, H. & Adams, N.A.2021bMesoscopic lattice Boltzmann modeling of the liquid-vapor phase transition. Phys. Rev. Lett.126 (24), 244501.
[84] Jaensson, N. & Vermant, J.2018Tensiometry and rheology of complex interfaces. Curr. Opin. Colloid Interface Sci.37, 136-150.
[85] Kähler, G., Bonelli, F., Gonnella, G. & Lamura, A.2015Cavitation inception of a van der Waals fluid at a sack-wall obstacle. Phys. Fluids27 (12), 123307.
[86] Kendon, V.M., Desplat, J.C., Bladon, P. & Cates, M.E.19993D spinodal decomposition in the inertial regime. Phys. Rev. Lett.83 (3), 576.
[87] Lai, H. & Ma, C.2010The lattice Boltzmann model for the second-order Benjamin-Ono equations. J.Stat. Mech.: Theory Exp.2010 (4), P04011.
[88] Lai, H. & Ma, C.2011Lattice Boltzmann model for generalized nonlinear wave equations. Phys. Rev. E84 (4), 046708.
[89] Lai, H., Xu, A., Zhang, G., Gan, Y., Ying, Y. & Succi, S.2016Non-equilibrium thermo-hydrodynamic effects on the Rayleigh-Taylor instability in compressible flows. Phys. Rev. E94 (2), 023106.
[90] Lan, Z.Z., Hu, W.Q. & Guo, B.L.2019General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model.73, 695-714. · Zbl 1481.76160
[91] Lang, F. & Leiderer, P.2006Liquid-vapour phase transitions at interfaces: sub-nanosecond investigations by monitoring the ejection of thin liquid films. New J. Phys.8 (1), 14.
[92] Ledesma-Aguilar, R., Vella, D. & Yeomans, J.M.2014Lattice-Boltzmann simulations of droplet evaporation. Soft Matt.10 (41), 8267.
[93] Li, W., Li, Q., Yu, Y. & Wen, Z.2020Enhancement of nucleate boiling by combining the effects of surface structure and mixed wettability: a lattice Boltzmann study. App. Therm. Engng180, 115849.
[94] Li, Q., Luo, K.H., Kang, Q.J., He, Y.L., Chen, Q. & Liu, Q.2016Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci.52, 62-105.
[95] Li, A., Luo, Y.X., Liu, Y., Xu, Y.Q., Tian, F.B. & Wang, Y.2022Hydrodynamic behaviors of self-propelled sperms in confined spaces. Engng Appl. Comput. Fluid Mech.16 (1), 141-160.
[96] Li, Z.H., Peng, A.P., Zhang, H.X. & Yang, J.Y.2015Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations. Prog. Aerosp. Sci.74, 81-113.
[97] Li, X., Shi, Y. & Shan, X.2019Temperature-scaled collision process for the high-order lattice Boltzmann model. Phys. Rev. E100 (1), 013301.
[98] Li, Q., Yu, Y., Zhou, P. & Yan, H.J.2018Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: a lattice Boltzmann study. Appl. Therm. Engng132, 490-499.
[99] Li, Z.H. & Zhang, H.X.2004Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. J.Comput. Phys.193 (2), 708-738. · Zbl 1109.76349
[100] Liang, H., Li, Y., Chen, J. & Xu, J.2019Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Intl J. Heat Mass Transfer130, 1189-1205.
[101] Liang, H., Li, Q.X., Shi, B.C. & Chai, Z.H.2016aLattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Phys. Rev. E93 (3), 033113.
[102] Liang, H., Shi, B.C. & Chai, Z.H.2016bLattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E93 (1), 013308.
[103] Liang, H., Shi, B.C., Guo, Z.L. & Chai, Z.H.2014Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E89 (5), 053320.
[104] Lin, C., Luo, K.H., Fei, L. & Succi, S.2017A multi-component discrete Boltzmann model for nonequilibrium reactive flows. Sci. Rep.7 (1), 14580.
[105] Lin, C., Luo, K.H., Xu, A., Gan, Y. & Lai, H.2021Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Phys. Rev. E103 (1), 013305.
[106] Lin, C., Xu, A., Zhang, G. & Li, Y.2016Double-distribution-function discrete Boltzmann model for combustion. Combust. Flame164, 137-151.
[107] Lin, C., Xu, A., Zhang, G., Li, Y. & Succi, S.2014Polar coordinate lattice Boltzmann modeling of compressible flows. Phys. Rev. E89 (1), 013307.
[108] Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G. & Zhang, Y.2018A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J.Fluid Mech.837, 381-412. · Zbl 1419.76521
[109] Liu, X., Chai, Z. & Shi, B.2019A phase-field-based lattice Boltzmann modeling of two-phase electro-hydrodynamic flows. Phys. Fluids31 (9), 092103.
[110] Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J. & Harting, J.2016Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci.20 (4), 777-805. · Zbl 1392.76085
[111] Liu, F. & Shi, W.2011Numerical solutions of two-dimensional Burgers’s equations by lattice Boltzmann method. Commun. Nonlinear Sci. Numer. Simul.16 (1), 150-157. · Zbl 1221.76165
[112] Liu, Z., Song, J., Xu, A., Zhang, Y. & Xie, K.2022 Discrete Boltzmann modeling of plasma shock wave. In Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, doi:10.1177/09544062221075943.
[113] Liu, H., Zhang, Y., Kang, W., Zhang, P., Duan, H. & He, X.T.2017Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Phys. Rev. E95 (2), 023201.
[114] Liu, H., Zhou, H., Kang, W., Zhang, P., Duan, H., Zhang, W. & He, X.T.2020Dynamics of bond breaking and formation in polyethylene near shock front. Phys. Rev. E102 (2), 023207.
[115] Luo, K.H., Fei, L. & Wang, G.2021A unified lattice Boltzmann model and application to multiphase flows. Phil. Trans. R. Soc. A379 (2208), 20200397.
[116] Luo, K.H., Xia, J. & Monaco, E.2009Multiscale modeling of multiphase flow with complex interactions. J.Multiscale Model.1 (1), 125-156.
[117] Mazloomi M, A., Chikatamarla, S.S. & Karlin, I.V.2015Entropic lattice Boltzmann method for multiphase flows. Phys. Rev. Lett.114 (17), 174502.
[118] Milan, F., Biferale, L., Sbragaglia, M. & Toschi, F.2020Sub-Kolmogorov droplet dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme. J.Comput. Sci.45, 101178.
[119] Montessori, A., Prestininzi, P., La Rocca, M. & Succi, S.2015Lattice Boltzmann approach for complex nonequilibrium flows. Phys. Rev. E92 (4), 043308.
[120] Montessori, A., Prestininzi, P., La Rocca, M. & Succi, S.2017Entropic lattice pseudo-potentials for multiphase flow simulations at high Weber and Reynolds numbers. Phys. Fluids29 (9), 092103.
[121] Myong, R.S.1999Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows. Phys. Fluids11 (9), 2788-2802. · Zbl 1149.76489
[122] Negro, G., Carenza, L.N., Lamura, A., Tiribocchi, A. & Gonnella, G.2019Rheology of active polar emulsions: from linear to unidirectional and inviscid flow, and intermittent viscosity. Soft Matt.15 (41), 8251-8265.
[123] Onuki, A.2002Phase Transition Dynamics. Cambridge University Press. · Zbl 1137.82302
[124] Onuki, A.2005Dynamic van der Waals theory of two-phase fluids in heat flow. Phys. Rev. Lett.94 (5), 054501.
[125] Onuki, A.2007Dynamic van der Waals theory. Phys. Rev. E75 (3), 036304.
[126] Osborn, W.R., Orlandini, E., Swift, M.R., Yeomans, J.M. & Banavar, J.R.1995Lattice Boltzmann study of hydrodynamic spinodal decomposition. Phys. Rev. Lett.75 (22), 4031.
[127] Otomo, H., Boghosian, B.M. & Dubois, F.2018Efficient lattice Boltzmann models for the Kuramoto-Sivashinsky equation. Comput. Fluids172, 683-688. · Zbl 1410.76373
[128] Pachalieva, A. & Wagner, A.J.2021 Connecting lattice Boltzmann methods to physical reality by coarse-graining molecular dynamics simulations. Preprint. arXiv:2109.05009.
[129] Parsa, M.R., Kim, C. & Wagner, A.J.2021Nonuniqueness of fluctuating momentum in coarse-grained systems. Phys. Rev. E104 (1), 015304.
[130] Parsa, M.R. & Wagner, A.J.2017Lattice gas with molecular dynamics collision operator. Phys. Rev. E96 (1), 013314.
[131] Parsa, M.R. & Wagner, A.J.2020Large fluctuations in nonideal coarse-grained systems. Phys. Rev. Lett.124 (23), 234501.
[132] Pelusi, F., Sbragaglia, M., Benzi, R., Scagliarini, A., Bernaschi, M. & Succi, S.2021Rayleigh-Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects. Soft Matt.17 (13), 3709-3721.
[133] Peng, D.Y. & Robinson, D.B.1976A new two-constant equation of state. Ind. Engng Chem. Fundam.15 (1), 59-64.
[134] Perlekar, P., Benzi, R., Clercx, H.J.H., Nelson, D.R. & Toschi, F.2014Spinodal decomposition in homogeneous and isotropic turbulence. Phys. Rev. Lett.112 (1), 014502.
[135] Persad, A.H. & Ward, C.A.2016Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation. Chem. Rev.116, 7727-7767.
[136] Philippi, P.C., Hegele, L.A., Dos Santos, L.O.E. & Surmas, R.2006From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models. Phys. Rev. E73 (5), 056702.
[137] Qin, F., Del Carro, L., Mazloomi Moqaddam, A., Kang, Q., Brunschwiler, T., Derome, D. & Carmeliet, J.2019Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. J.Fluid Mech.866, 33-60. · Zbl 1415.76510
[138] Qiu, R., Bao, Y., Zhou, T., Che, H., Chen, R. & You, Y.2020Study of regular reflection shock waves using a mesoscopic kinetic approach: curvature pattern and effects of viscosity. Phy. Fluids32 (10), 106106.
[139] Qiu, R., Zhou, T., Bao, Y., Zhou, K., Che, H. & You, Y.2021Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube. Phys. Rev. E103 (5), 053113.
[140] Rana, A.S., Saini, S., Chakraborty, S., Lockerby, D.A. & Sprittles, J.E.2021Efficient simulation of non-classical liquid-vapour phase-transition flows: a method of fundamental solutions. J.Fluid Mech.919, A35. · Zbl 1495.76088
[141] Rasin, I., Miller, W. & Succi, S.2005Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth. Phys. Rev. E72 (6), 066705.
[142] Redlich, O. & Kwong, J.N.S.1949On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev.44 (1), 233-244.
[143] Ren, Q.2019Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe. Energy Convers. Manage.180, 784-795.
[144] Rojas, R., Takaki, T. & Ohno, M.2015A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. J.Comput. Phys.298, 29-40. · Zbl 1349.76731
[145] Rykov, V.A.1975A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn.10 (6), 959-966.
[146] Safari, H., Rahimian, M.H. & Krafczyk, M.2014Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. Phys. Rev. E90 (3), 033305.
[147] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K. & Toschi, F.2007Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E75 (2), 026702.
[148] Sbragaglia, M. & Succi, S.2005Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys. Fluids17 (9), 093602. · Zbl 1187.76469
[149] Schweizer, M., Öttinger, H.C. & Savin, T.2016Nonequilibrium thermodynamics of an interface. Phys. Rev. E93 (5), 052803.
[150] Shakhov, E.M.1968Generalization of the Krook kinetic relaxation equation. Fluid Dyn.3 (5), 95-96.
[151] Shan, X. & Chen, H.1993Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E47 (3), 1815-1819.
[152] Shan, X. & Chen, H.1994Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E49 (4), 2941-2948.
[153] Shan, X., Yuan, X. & Chen, H.2006Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J.Fluid Mech.550, 413-441. · Zbl 1097.76061
[154] Shi, Y. & Shan, X.2021A multiple-relaxation-time collision model for nonequilibrium flows. Phys. Fluids33 (3), 037134.
[155] Shi, Y., Wu, L. & Shan, X.2021Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow. J.Fluid Mech.907, A25. · Zbl 1461.76394
[156] Sofonea, V., Biciuşcă, T., Busuioc, S., Ambruş, V.E., Gonnella, G. & Lamura, A.2018Corner-transport-upwind lattice Boltzmann model for bubble cavitation. Phys. Rev. E97 (2), 023309.
[157] Sofonea, V., Lamura, A., Gonnella, G. & Cristea, A.2004Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems. Phys. Rev. E70 (4), 046702.
[158] Sofonea, V. & Sekerka, R.F.2005Diffuse-reflection boundary conditions for a thermal lattice Boltzmann model in two dimensions: evidence of temperature jump and slip velocity in microchannels. Phys. Rev. E71 (6), 066709.
[159] Stanley, H.E.1971Phase Transitions and Critical Phenomena. Clarendon Press.
[160] Struchtrup, H.1997The BGK-model with velocity-dependent collision frequency. Contin. Mech. Thermodyn.9 (1), 23-31. · Zbl 0891.76079
[161] Struchtrup, H.2005Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Springer. · Zbl 1119.76002
[162] Struchtrup, H., Beckmann, A., Rana, A.S. & Frezzotti, A.2017Evaporation boundary conditions for the R13 equations of rarefied gas dynamics. Phys. Fluids29 (9), 092004.
[163] Struchtrup, H. & Frezzotti, A.2022Twenty-six moment equations for the Enskog-Vlasov equation. J.Fluid Mech.940, A40. · Zbl 1512.76098
[164] Struchtrup, H. & Torrilhon, M.2003Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids15 (9), 2668-2680. · Zbl 1186.76504
[165] Su, X. & Lin, C.2022Nonequilibrium effects of reactive flow based on gas kinetic theory. Commun. Theor. Phys.74 (3), 035604. · Zbl 1514.82174
[166] Succi, S.2001The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press. · Zbl 0990.76001
[167] Succi, S.2014A note on the lattice Boltzmann versus finite-difference methods for the numerical solution of the Fisher’s equation. Intl J. Mod. Phys. C25 (01), 1340015.
[168] Succi, S.2018The Lattice Boltzmann Equation: For Complex States of Flowing Matter. Oxford University Press. · Zbl 1485.76003
[169] Succi, S., Amati, G., Bonaccorso, F., Lauricella, M., Bernaschi, M., Montessori, A. & Tiribocchi, A.2020Toward exascale design of soft mesoscale materials. J.Comput. Sci.46, 101175.
[170] Succi, S., Montessori, A., Lauricella, M., Tiribocchi, A. & Bonaccorso, F.2021 Density functional kinetic theory for soft matter. In Proceedings of SIMAI 2020+21.
[171] Sun, D., Pan, S., Han, Q. & Sun, B.2016aNumerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. Intl J. Heat Mass Transfer103, 821-831.
[172] Sun, D., Zhu, M., Wang, J. & Sun, B.2016bLattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Intl J. Heat Mass Transfer94, 474-487.
[173] Swift, M.R., Orlandini, E., Osborn, W.R. & Yeomans, J.M.1996Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E54 (5), 5041-5052.
[174] Swift, M.R., Osborn, W.R. & Yeomans, J.M.1995Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett.75 (5), 830-833.
[175] Tavares, H.S., Biferale, L., Sbragaglia, M. & Mailybaev, A.A.2021Immiscible Rayleigh-Taylor turbulence using mesoscopic lattice Boltzmann algorithms. Phys. Rev. Fluids6 (5), 054606.
[176] Tian, Y., et al.2022Artificial mitochondrion for fast latent heat storage: experimental study and lattice Boltzmann simulation. Energy245, 123296.
[177] Torrilhon, M.2016Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech.48, 429-458. · Zbl 1356.76297
[178] Toschi, F. & Succi, S.2005Lattice Boltzmann method at finite Knudsen numbers. Europhys. Lett.69 (4), 549.
[179] Vilar, J.M.G. & Rubi, J.M.2001Thermodynamics ‘beyond’ local equilibrium. Proc. Natl Acad. Sci.98 (20), 11081-11084.
[180] Wagner, A.J.2003The origin of spurious velocities in lattice Boltzmann. Intl J. Mod. Phys. C17 (1-2), 193-196.
[181] Wagner, A.J.2006Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys. Rev. E74 (5), 056703.
[182] Wagner, A.J. & Pagonabarraga, I.2002Lees-Edwards boundary conditions for lattice Boltzmann. J.Stat. Phys.107 (1), 521-537. · Zbl 1007.82008
[183] Wagner, A.J., Wilson, L.M. & Cates, M.E.2003Role of inertia in two-dimensional deformation and breakdown of a droplet. Phys. Rev. E68 (4), 045301.
[184] Wagner, A.J. & Yeomans, J.M.1998Breakdown of scale invariance in the coarsening of phase-separating binary fluids. Phys. Rev. Lett.80 (7), 1429.
[185] Wang, H.2017aNumerical simulation for the solitary wave of Zakharov-Kuznetsov equation based on lattice Boltzmann method. Appl. Math. Model.45, 1-13. · Zbl 1446.76049
[186] Wang, H.2017bSolitary wave of the Korteweg-de Vries equation based on lattice Boltzmann model with three conservation laws. Adv. Space Res.59 (1), 283-292.
[187] Wang, H.2019Numerical simulation for solitary wave of Klein-Gordon-Zakharov equation based on the lattice Boltzmann model. Comput. Maths Applics.78 (12), 3941-3955. · Zbl 1443.76187
[188] Wang, H.2020Numerical simulation for (3+1)D solitary wave of extended Zakharov-Kuznetsov equation in dusty plasma based on lattice Boltzmann method. Phys. Lett. A384 (32), 126809.
[189] Wang, H., Li, X., Li, Y. & Geng, X.2017Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field. Ultrason. Sonochem.36, 101-111.
[190] Wang, Y., Shu, C., Huang, H.B. & Teo, C.J.2015aMultiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio. J.Comput. Phys.280, 404-423. · Zbl 1349.76746
[191] Wang, Y., Shu, C. & Yang, L.2015bAn improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number. J.Comput. Phys.302, 41-58. · Zbl 1349.76747
[192] Wang, C., Xu, A., Zhang, G. & Li, Y.2009Simulating liquid-vapor phase separation under shear with lattice Boltzmann method. Sci. China, Ser. G52 (9), 1337-1344.
[193] Watari, M.2016Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models. J.Fluids Engng138 (1), 011202.
[194] Weeks, J.D.1977Structure and thermodynamics of the liquid-vapor interface. J.Chem. Phys.67 (7), 3106-3121.
[195] Wei, Y, Li, Y., Wang, Z., Yang, H., Zhu, Z., Qian, Y. & Luo, K.H.2022Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability. Phys. Rev. E105 (1), 015103.
[196] Wen, B., Zhao, L., Qiu, W., Ye, Y. & Shan, X.2020Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios. Phys. Rev. E102 (1), 013303.
[197] Wen, B., Zhou, X., He, B., Zhang, C. & Fang, H.2017Chemical-potential-based lattice Boltzmann method for nonideal fluids. Phys. Rev. E95 (6), 063305.
[198] Wöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I. & Kusumaatmaja, H.2018Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Phys. Rev. Lett.120 (23), 234501.
[199] Wu, J.L., Li, Z.H., Zhang, Z.B. & Peng, A.P.2021aOn derivation and verification of a kinetic model for quantum vibrational energy of polyatomic gases in the gas-kinetic unified algorithm. J.Comput. Phys.435, 109938. · Zbl 07503720
[200] Wu, W., Liu, Q. & Wang, B.2021bCurved surface effect on high-speed droplet impingement. J.Fluid Mech.909, A7. · Zbl 1461.76342
[201] Xu, K.2014Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes. World Scientific Publishing.
[202] Xu, A., Chen, J., Song, J., Chen, D. & Chen, Z.2021aProgress of discrete Boltzmann study on multiphase complex flows. Acta Aerodyn. Sin.39 (3), 138-169.
[203] Xu, A., Gonnella, G. & Lamura, A.2003Phase-separating binary fluids under oscillatory shear. Phys. Rev. E67 (5), 056105.
[204] Xu, A., Gonnella, G. & Lamura, A.2004Numerical study of the ordering properties of lamellar phase. Physica A344 (3-4), 750-756.
[205] Xu, A., Shan, Y., Chen, F., Gan, Y. & Lin, C.2021bProgress of mesoscale modeling and investigation of combustion multi-phase flow. Acta Aeronaut. Astronaut. Sin.42 (12), 625842.
[206] Xu, A., Song, J., Chen, F., Xie, K. & Ying, Y.2021cModeling and analysis methods for complex fields based on phase space. Chinese J. Comput. Phys.38 (6), 631.
[207] Xu, Y.Q., Wang, M.Y., Liu, Q.Y., Tang, X.Y. & Tian, F.B.2018bExternal force-induced focus pattern of a flexible filament in a viscous fluid. Appl. Math. Model.53, 369-383. · Zbl 1480.76172
[208] Xu, A.G., Zhang, G.C., Gan, Y.B., Chen, F. & Yu, X.J.2012Lattice Boltzmann modeling and simulation of compressible flows. Front. Phys.7 (5), 582-600.
[209] Xu, A., Zhang, G. & Zhang, Y.2018a Discrete Boltzmann modeling of compressible flows. In Kinetic Theory, Chap. 02. (ed. G.Z. Kyzas & A.C. Mitropoulos). InTech.
[210] Yan, G.2000A lattice Boltzmann equation for waves. J.Comput. Phys.161 (1), 61-69. · Zbl 0969.76076
[211] Yan, W., Cai, B., Liu, Y. & Fu, B.2012Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech. Model. Mechanobiol.11 (5), 641-653.
[212] Yang, Z., Liu, S., Zhuo, C. & Zhong, C.2022bFree-energy-based discrete unified gas kinetic scheme for van der Waals fluid. Entropy24 (9), 1202.
[213] Yang, Y., Shan, M., Kan, X., Shangguan, Y. & Han, Q.2020Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Ultrason. Sonochem.62, 104873.
[214] Yang, Y., Shan, M., Su, N., Kan, X., Shangguan, Y. & Han, Q.2022aRole of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method. Intl Commun. Heat Mass Transfer134, 105988.
[215] Yang, L.M., Shu, C., Yang, W.M., Chen, Z. & Dong, H.2018An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes. Phys. Fluids30 (6), 062005.
[216] Yang, Z., Zhong, C. & Zhuo, C.2019Phase-field method based on discrete unified gas-kinetic scheme for large-density-ratio two-phase flows. Phys. Rev. E99 (4), 043302.
[217] Zang, D.2020Acoustic Levitation: From Physics to Applications. Springer Nature.
[218] Zang, D., Tarafdar, S., Tarasevich, Y.Y., Choudhury, M.D. & Dutta, T.2019Evaporation of a droplet: from physics to applications. Phys. Rep.804, 1-56.
[219] Zarghami, A. & Van Den Akker, H.E.A.2017Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method. Phys. Rev. E95 (4), 043310.
[220] Zhang, R., He, X., Doolen, G. & Chen, S.2001Surface tension effects on two-dimensional two-phase Kelvin-Helmholtz instabilities. Adv. Water Res.24 (3-4), 461-478.
[221] Zhang, R., Shan, X. & Chen, H.2006Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation. Phys. Rev. E74 (4), 046703.
[222] Zhang, Y., Xu, A., Chen, F., Lin, C. & Wei, Z.H.2022bNon-equilibrium characteristics of mass and heat transfers in the slip flow. AIP Adv.12 (3), 035347.
[223] Zhang, Y., Xu, A., Zhang, G., Gan, Y., Chen, Z. & Succi, S.2019Entropy production in thermal phase separation: a kinetic-theory approach. Soft Matt.15 (10), 2245-2259.
[224] Zhang, D., Xu, A., Zhang, Y., Gan, Y. & Li, Y.2022aDiscrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium. Phys. Fluids34, 086104.
[225] Zhang, D., Xu, A., Zhang, Y. & Li, Y.2020Two-fluid discrete Boltzmann model for compressible flows: based on ellipsoidal statistical Bhatnagar-Gross-Krook. Phys. Fluids32 (12), 126110.
[226] Zhang, G., Xu, A., Zhang, D., Li, Y., Lai, H. & Hu, X.2021Delineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers. Phys. Fluids33 (7), 076105.
[227] Zhang, Y., Xu, A., Zhang, G., Zhu, C. & Lin, C.2016Kinetic modeling of detonation and effects of negative temperature coefficient. Combust. Flame173, 483-492.
[228] Zhang, J. & Yan, G.2010Lattice Boltzmann model for the complex Ginzburg-Landau equation. Phys. Rev. E81 (6), 066705.
[229] Zhang, J. & Yan, G.2014Three-dimensional lattice Boltzmann model for the complex Ginzburg-Landau equation. J.Sci. Comput.60 (3), 660-683. · Zbl 1299.76207
[230] Zhang, J., Yan, G. & Dong, Y.2009A new lattice Boltzmann model for the Laplace equation. Appl. Maths Comput.215 (2), 539-547. · Zbl 1172.76039
[231] Zheng, H.W., Shu, C. & Chew, Y.T.2006A lattice Boltzmann model for multiphase flows with large density ratio. J.Comput. Phys.218 (1), 353-371. · Zbl 1158.76419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.