×

Discrete line integral on uniform grids: probabilistic interpretation and applications. (English) Zbl 1469.60060

Summary: Following the methodology developed by [J. M. Hyman and M. Shashkov, Comput. Math. Appl. 33, No. 4, 81–104 (1997; Zbl 0868.65006)], we define a discrete version of gradient vector and associated line integral along arbitrary path connecting two nodes of uniform grid. An exponential representation of joint survival function of bivariate discrete non-negative integer-valued random variables in terms of discrete line integral is established. We apply it to generate a discrete analogue of the Sibuya-type aging property, incorporating many classical and new bivariate discrete models. Several characterizations and closure properties of this class of bivariate discrete distributions are presented.

MSC:

60E05 Probability distributions: general theory
62E10 Characterization and structure theory of statistical distributions
39A12 Discrete version of topics in analysis
62N05 Reliability and life testing

Citations:

Zbl 0868.65006

References:

[1] Apostol, T. M. (1969). Calculus: Multi-Variable Calculus and Linear Algebra, with Applications to Differential Equations, 2nd ed. New York: Wiley. · Zbl 0185.11402
[2] Asha, G., Sankaran, P. G. and Nair, N. U. (2003). Probability models with constant total failure rate. Communications in Statistics Theory and Methods 32, 1089-1099. · Zbl 1104.62329 · doi:10.1081/STA-120021321
[3] Barlow, R. and Proschan, F. (1965). Mathematical Theory of Reliability. New York: Wiley. · Zbl 0132.39302
[4] Cox, D. and Oakes, D. (1984). Analysis of Survival Data. London: Chapman & Hall.
[5] Dhar, S. K. (1998). Data analysis with discrete analog of Freund’s model. Journal of Applied Statistical Science 7, 169-183. · Zbl 0905.62011
[6] Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association 56, 971-977. · Zbl 0106.13304 · doi:10.1080/01621459.1961.10482138
[7] Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association 55, 698-707. · Zbl 0099.14501 · doi:10.1080/01621459.1960.10483368
[8] Hyman, J. M. and Shashkov, M. (1997). Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Computers & Mathematics with Applications 33, 81-104. · Zbl 0868.65006 · doi:10.1016/S0898-1221(97)00009-6
[9] Johnson, N. L. and Kotz, S. (1975). A vector multivariate hazard rate. Journal of Multivariate Analysis 5, 53-66. · Zbl 0297.60013 · doi:10.1016/0047-259X(75)90055-X
[10] Kodlin, D. (1967). A new response time distribution. Biometrics 23, 227-239.
[11] Konstantopoulos, T. and Yuan, L. (2017). A probabilistic interpretation of the Gaussian binomial coefficients. Journal of Applied Probability 54, 1295-1298. · Zbl 1396.60048 · doi:10.1017/jpr.2017.64
[12] Kulkarni, H. V. (2006). Characterizations and modelling of multivariate lack of memory property. Metrika 64, 167-180. · Zbl 1100.62060 · doi:10.1007/s00184-006-0042-2
[13] Lee, H., Cha, J.-H. and Pulcini, G. (2017). Modeling discrete bivariate data with applications to failure and count data. Quality and Reliability Engineering International 33, 1455-1473.
[14] Li, X. and Pellerey, F. (2011). Generalized Marshall-Olkin distributions and related bivariate aging properties. Journal of Multivariate Analysis 102, 1399-1409. · Zbl 1221.60014 · doi:10.1016/j.jmva.2011.05.006
[15] Marshall, A. W. (1975). Some comments on the hazard gradient. Stochastic Processes and Their Applications 3, 293-300. · Zbl 0329.62040 · doi:10.1016/0304-4149(75)90028-9
[16] Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association 62, 30-44. · Zbl 0147.38106 · doi:10.1080/01621459.1967.10482885
[17] Mi, J. (1993). Discrete bathtub failure rate and upside-down bathtub mean residual life. Naval Research Logistics 40, 361-371. · Zbl 0767.62088 · doi:10.1002/1520-6750(199304)40:3<361::AID-NAV3220400306>3.0.CO;2-I
[18] Nair, N. U. and Asha, G. (1997). Some classes of multivariate life distributions in discrete time. Journal of Multivariate Analysis 62, 181-189. · Zbl 0890.62040 · doi:10.1006/jmva.1997.1682
[19] Nair, N. U. and Nair, K. (1990). Characterizations of a bivariate geometric distribution. Statistica 50, 247-253. · Zbl 0722.62038
[20] Nair, N. U., Sankaran, P. G. and Balakrishnan, N. (2018). Reliability Modelling and Analysis in Discrete Time. London: Academic Press. · Zbl 1479.60002
[21] Omey, E. and Minkova, L. (2014). Bivariate geometric distributions. Comptes rendus de l’Academie bulgare des Sciences 67, 1201-1210. · Zbl 1324.60007
[22] Pinto, J. and Kolev, N. (2015). Sibuya-type bivariate lack of memory property. Journal of Multivariate Analysis 134, 119-128. · Zbl 1352.60019 · doi:10.1016/j.jmva.2014.11.001
[23] Pinto, J. and Kolev, N. (2016). A class of continuous bivariate distributions with linear sum of hazard gradient components. Journal of Statistical Distributions and Applications 3, Article ID 10. · Zbl 1349.62178 · doi:10.1186/s40488-016-0048-x
[24] Roy, D. and Gupta, R. (1992). Classifications of discrete lives. Microelectronics and Reliability 32, 1459-1473.
[25] Shaked, M., Shanthikumar, J. and Torres, J. (1995). Discrete hazard rate functions. Computers & Operations Research 22, 391-402. · Zbl 0822.90073 · doi:10.1016/0305-0548(94)00048-D
[26] Sibuya, M. · Zbl 0095.33703 · doi:10.1007/BF01682329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.