×

Rate-independent dissipation in phase-field modelling of displacive transformations. (English) Zbl 1441.74147

Summary: In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

MSC:

74N99 Phase transformations in solids
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74N05 Crystals in solids
Full Text: DOI

References:

[1] Abeyaratne, R.; Chu, C.; James, R. D., Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy, Philos. Mag. A, 73, 457-497 (1996)
[2] Abeyaratne, R.; Knowles, J. K., Kinetic relations and the propagation of phase boundaries in solids, Arch. Ration. Mech. Anal., 114, 119-154 (1991) · Zbl 0745.73001
[3] Abeyaratne, R.; Knowles, J. K., On the kinetics of an austenite → martensite phase transformation induced by impact in a Cu-Al-Ni shape-memory alloy, Acta Mater., 45, 1671-1683 (1997)
[4] Ahluvalia, R.; Lookman, T.; Saxena, A.; Albers, R. C., Landau theory for shape memory polycrystals, Acta Mater., 52, 209-218 (2004)
[5] Ammar, K.; Appolaire, B.; Cailletaud, G.; Forest, S., Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech., 18, 485-523 (2009) · Zbl 1278.74139
[6] Artemev, A.; Wang, Y.; Khachaturyan, A. G., Three-dimensional phase field model and simulation of austenite transformation in multilayer systems under applied stresses, Acta Mater., 48, 2503-2518 (2000)
[7] Auricchio, F.; Taylor, R. L., Shape-memory alloys: modelling and numerical simulations of finite-strain superelastic behavior, Comp. Methods Appl. Mech. Eng., 143, 175-194 (1997) · Zbl 0891.73027
[8] Bartel, T.; Menzel, A., Modelling and simulation of cyclic thermomechanical behavior of NiTi wires using a weak discontinuity approach, Int. J. Fract., 202, 281-293 (2016)
[9] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods (1996), Athena Scientific: Athena Scientific Belmont, MA
[10] Bhattacharya, K., Phase boundary propagation in a heterogeneous body, Proc. R. Soc. Lond. A, 455, 757-766 (1999) · Zbl 0990.74047
[11] Bhattacharya, K., Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1109.74002
[12] Chen, L. Q., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002)
[13] Chen, L. Q.; Shen, J., Applications of semi-implicit Fourier-spectral method to phase field equations, Comp. Phys. Commun., 108, 147-158 (1998) · Zbl 1017.65533
[14] Chu, C., Hysteresis and microstructures: a study of biaxial loading on compound twins of copper-aluminum-nickel single crystals (1993), University of Minnesota, Ph.D. thesis
[15] Clayton, J. D.; Knap, J., A phase field model of deformation twinning: nonlinear theory and numerical simulations, Phys. D, 240, 841-858 (2011) · Zbl 1211.74051
[16] Fischer, F. D.; Svoboda, J.; Petryk, H., Thermodynamic extremal principles for irreversible processes in materials science, Acta Mater., 67, 1-20 (2014)
[17] Hackl, K.; Heinen, R., A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy, Contin. Mech. Thermodyn., 19, 499-510 (2008) · Zbl 1170.74315
[18] Halphen, B.; Nguyen, Q. S., Sur les matériaux standard généralisés, Journal de Mécanique, 14, 39-63 (1975) · Zbl 0308.73017
[19] Hane, K. F., Bulk and thin film microstructures in untwinned martensites, J. Mech. Phys. Solids, 47, 1917-1939 (1999) · Zbl 0963.74044
[20] Helm, D.; Haupt, P., Shape memory behavior: modelling within continuum thermomechanics, Int. J. Solids Struct., 40, 827-849 (2003) · Zbl 1025.74022
[21] Hildebrand, F. E.; Miehe, C., A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains, Philos. Mag., 92, 4250-4290 (2012)
[22] Hudobivnik, B.; Korelc, J., Closed-form representation of matrix functions in the formulation of nonlinear material models, Finite Elem. Anal. Des., 111, 19-32 (2016)
[23] Idesman, A. V.; Levitas, V. I.; Preston, D. L.; Cho, J. Y., Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model, J. Mech. Phys. Solids, 53, 495-523 (2005) · Zbl 1122.74475
[24] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes, Eng. Comput., 18, 312-327 (2002)
[25] Korelc, J., Automation of primal and sensitivity analysis of transient coupled problems, Comp. Mech., 44, 631-649 (2009) · Zbl 1171.74043
[26] Korelc, J.; Stupkiewicz, S., Closed-form matrix exponential and its application in finite-strain plasticity, Int. J. Num. Methods Eng., 98, 960-987 (2014) · Zbl 1352.74482
[27] Kružík, M.; Mielke, A.; Roubíček, T., Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi, Meccanica, 40, 389-418 (2005) · Zbl 1106.74048
[28] Lahellec, N.; Suquet, P., On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles, J. Mech. Phys. Solids, 55, 1932-1963 (2007) · Zbl 1170.74044
[29] Lengiewicz, J.; Wichrowski, M.; Stupkiewicz, S., Mixed formulation and finite element treatment of the mass-conserving cavitation model, Tribol. Int., 72, 143-155 (2014)
[30] Levitas, V. I.; Lee, D. W., A thermal resistance to interface motion in the phase-field theory of microstructure evolution, Phys. Rev. Lett., 99, 245701 (2007)
[31] Levitas, V. I.; Lee, D. W.; Preston, D. L., Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations, Int. J. Plast., 26, 3, 395-422 (2010) · Zbl 1454.74130
[32] Levitas, V. I.; Levin, V. A.; Zingerman, K. M.; Freiman, E. I., Displacive phase transitions at large strains: phase-field theory and simulations, Phys. Rev. Lett., 103, 025702 (2009)
[33] Levitas, V. I.; Preston, D. L., Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔martensite, Phys. Rev. B, 66, 134206 (2002)
[34] Mamivand, M.; Zaeem, M. A.; El Kadiri, H., A review on phase field modeling of martensitic phase transformation, Comput. Mater. Sci., 77, 304-311 (2013)
[35] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comp. Methods Appl. Mech. Eng., 199, 2765-2778 (2010) · Zbl 1231.74022
[36] Mielke, A.; Roubíček, T., Rate-independent Systems (2015), Springer: Springer New York · Zbl 1339.35006
[37] Moelans, N.; Blanpain, B.; Wollants, P., An introduction to phase-field modeling of microstructure evolution, Calphad, 32, 268-294 (2008)
[38] Moreau, J., On unilateral constraints, friction and plasticity, (Capriz, G.; Stampacchia, G., New Variational Techniques in Mathematical Physics (1974), CIME, Edizioni Cremonese: CIME, Edizioni Cremonese Roma), 175-322
[39] Moreau, J. J., Sur les lois de frottement, de plasticité et de viscosité, C. R. Acad. Sci. Paris A, 271, 608-611 (1970)
[40] Mosler, J.; Shchyglo, O.; Hojjat, H. M., A novel homogenization method for phase field approaches based on partial rank-one relaxation, J. Mech. Phys. Solids, 68, 251-266 (2014) · Zbl 1328.74033
[41] Ngan, S. C.; Truskinovsky, L., Thermal trapping and kinetics of martensitic phase boundaries, J. Mech. Phys. Solids, 47, 141-172 (1999) · Zbl 0959.74052
[42] Onsager, L., Reciprocal relations in irreversible processes, I. Phys. Rev., 37, 405-426 (1931) · JFM 57.1168.10
[43] Otsuka, K.; Wayman, C. M., Shape Memory Materials (1998), Cambridge University Press
[44] Penrose, O.; Fife, P. C., Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D, 43, 44-62 (1990) · Zbl 0709.76001
[45] Petryk, H., Thermodynamic conditions for stability in materials with rate-independent dissipation, Phil. Trans. R. Soc. Lond. A, 363, 2479-2515 (2005) · Zbl 1152.74310
[46] Petryk, H.; Stupkiewicz, S., Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory, J. Mech. Phys. Solids, 58, 390-408 (2010) · Zbl 1193.74046
[47] Petryk, H.; Stupkiewicz, S.; Maciejewski, G., Interfacial energy and dissipation in martensitic phase transformations. Part II: Size effects in pseudoelasticity, J. Mech. Phys. Solids, 58, 373-389 (2010) · Zbl 1193.74047
[48] Peypouquet, J., Convex Optimization in Normed Spaces (2015), Springer International Publishing · Zbl 1322.90004
[49] Puglisi, G.; Truskinovsky, L., Rate independent hysteresis in a bi-stable chain, J. Mech. Phys. Solids, 50, 165-187 (2002) · Zbl 1035.74045
[50] Raniecki, B.; Lexcellent, C., \(R_L\)-Models of pseudoelasticity and their specifications for some shape memory alloys, Eur. J. Mech. A/Solids, 13, 21-50 (1994) · Zbl 0795.73010
[51] Raous, M.; Cangemi, L.; Cocu, M., A consistent model coupling adhesion, friction, and unilateral contact, Comp. Methods Appl. Mech. Eng., 177, 383-399 (1999) · Zbl 0949.74008
[52] Reese, S.; Christ, D., Finite deformation pseudo-elasticity of shape memory alloys - constitutive modelling and finite element implementation, Int. J. Plast., 24, 455-482 (2008) · Zbl 1145.74005
[53] Rice, J. R., Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms, (Argon, A. S., Constitutive Equations in Plasticity (1975), MIT Press: MIT Press Cambridge, Mass.), 23-79
[54] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0229.90020
[55] Roubíček, T., Approximation in multiscale modelling of microstructure evolution in shape-memory alloys, Contin. Mech. Thermodyn, 23, 491-507 (2011) · Zbl 1272.74487
[56] Sadjadpour, A.; Bhattacharya, K., A micromechanics inspired constitutive model for shape-memory alloys, Smart Mater. Struct., 16, 1751-1765 (2007)
[57] San Juan, J.; Nó, M. L.; Schuh, C. A., Nanoscale shape-memory alloys for ultrahigh mechanical damping, Nat. Nanotechnol., 4, 415-419 (2009)
[58] Schneider, D.; Tschukin, O.; Choudhury, A.; Selzer, M.; Boehlke, T.; Nestler, B., Phase-field elasticity model based on mechanical jump conditions, Comp. Mech., 55, 887-901 (2015) · Zbl 1329.74027
[59] Sedlák, P.; Frost, M.; Benešová, B.; Ben Zineb, T.; Šittner, P., Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Int. J. Plast., 39, 132-151 (2012)
[60] Shaw, J. A.; Kyriakides, S., On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45, 683-700 (1997)
[61] Souza, A. C.; Mamiya, E. N.; Zouain, N., Three-dimensional model for solids undergoing stress-induced phase transformations, Eur. J. Mech. A/Solids, 17, 789-806 (1998) · Zbl 0921.73024
[62] Steinbach, I., Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., 17, 073001 (2009)
[63] Steinbach, I.; Pezzola, F.; Nestler, B.; Seesselberg, M.; Prieler, R.; Schmitz, G. J.; Rezende, J. L.L., A phase field concept for multiphase systems, Phys. D, 94, 135-147 (1996) · Zbl 0885.35148
[64] Stupkiewicz, S.; Petryk, H., Modelling of laminated microstructures in stress-induced martensitic transformation, J. Mech. Phys. Solids, 50, 2303-2331 (2002) · Zbl 1100.74612
[65] Stupkiewicz, S.; Petryk, H., A robust model of pseudoelasticity in shape memory alloys, Int. J. Num. Methods Eng., 93, 747-769 (2013) · Zbl 1352.74227
[66] Suezawa, M.; Sumino, K., Behavior of elastic constants in Cu-Al-Ni alloy in the close vicinity of \(M_s\)-point, Scripta Metall., 10, 789-792 (1976)
[67] Sun, Q. P.; Li, Z. Q., Phase transformation in superelastic niti polycrystalline micro-tubes under tension and torsion—from localization to homogeneous deformation, Int. J. Sol. Struct., 39, 3797-3809 (2002)
[68] Thamburaja, P.; Anand, L., Polycrystalline shape-memory materials: effect of crystallographic texture, J. Mech. Phys. Solids, 49, 709-737 (2001) · Zbl 1011.74049
[69] Tůma, K.; Stupkiewicz, S., Phase-field study of size-dependent morphology of austenite-twinned martensite interface in CuAlNi, Int. J. Solids Struct, 97-98, 89-100 (2016)
[70] Tůma, K.; Stupkiewicz, S.; Petryk, H., Size effects in martensitic microstructures: finite-strain phase field model versus sharp-interface approach, J. Mech. Phys. Solids, 95, 284-307 (2016)
[71] Šittner, P.; Novák, V., Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, Int. J. Plast., 16, 1243-1268 (2000) · Zbl 1002.74077
[72] Wang, Y.; Khachaturyan, A. G., Three-dimensional field model and computer modeling of martensitic transformations, Acta Mater., 45, 759-773 (1997)
[73] Wang, Y.; Li, J., Phase field modeling of defects and deformation, Acta Mater., 58, 1212-1235 (2010)
[74] Yasunaga, M.; Funatsu, Y.; Kojima, S.; Otsuka, K.; Suzuki, T., Measurement of elastic constants, Scripta Metall., 17, 1091-1094 (1983)
[75] Zhang, Z.; James, R. D.; Muller, S., Energy barriers and hysteresis in martensitic phase transformations, Acta Mater., 57, 4332-4352 (2009)
[76] Ziegler, H., Some extremum principles in irreversible thermodynamics with application to continuum mechanics, Progress in Solid Mechanics, Vol. IV. North-Holland, 91-193 (1963), Amsterdam · Zbl 0116.15902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.