×

Boundary integral formulation for flows containing an interface between two porous media. (English) Zbl 1383.76360

Summary: A system of boundary integral equations is derived for flows in domains composed of a porous medium of permeability \(k_{1}\), surrounded by another porous medium of different permeability, \(k_{2}\). The incompressible Brinkman equation is used to describe the flow in the porous media. We first apply a boundary integral representation of the Brinkman flow on each side of the dividing interface, and impose continuity of the velocity at the interface to derive the final formulation in terms of the interfacial velocity and surface forces. We discuss relations between the surface stresses based on the additional conditions imposed at the interface that depend on the porosity and permeability of the media and the structural composition of the interface. We present simulated results for test problems and different interface stress conditions. The results show significant sensitivity to the choice of the interface conditions, especially when the permeability is large. Since the Brinkman equation approaches the Stokes equation when the permeability approaches infinity, our boundary integral formulation can also be used to model the flow in sub-categories of Stokes-Stokes and Stokes-Brinkman configurations by considering infinite permeability in the Stokes fluid domain.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Alazmi, B.; Vafai, K., Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer, Intl J. Heat Mass Transfer, 44, 1735-1749, (2000) · Zbl 1091.76567 · doi:10.1016/S0017-9310(00)00217-9
[2] Anselone, P. M., Singularity subtraction in the numerical solution of integral equations, J. Austral. Math. Soc. B, 22, 4, 408-418, (1981) · Zbl 0477.65095 · doi:10.1017/S0334270000002757
[3] Bear, J.; Cheng, A., Modeling Groundwater Flow and Contaminant Transport, (2010), Springer · Zbl 1195.76002 · doi:10.1007/978-1-4020-6682-5
[4] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 1, 197-207, (1967) · doi:10.1017/S0022112067001375
[5] Beavers, G. S.; Sparrow, E. M.; Magnuson, R. A., Experiments on coupled parallel flows in a channel and a bounding porous medium, Trans. ASME J. Basic Engng, 92D, 843-848, (1970) · doi:10.1115/1.3425155
[6] Bhattacharyya, A., Effect of momentum transfer condition at the interface of a model of creeping flow past a spherical permeable aggregate, Eur. J. Mech. (B/Fluids), 29, 285-294, (2010) · Zbl 1193.76139 · doi:10.1016/j.euromechflu.2010.03.002
[7] Brinkman, H., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1, 1, 27-34, (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[8] Chandesris, M.; Jamet, D., Boundary condition at a planar fluid – porous interface fo a Poiseuille flow, Intl J. Heat Mass Transfer, 49, 2137-2150, (2006) · Zbl 1189.76589 · doi:10.1016/j.ijheatmasstransfer.2005.12.010
[9] Chen, N.; Gunzburger, M.; Wang, X., Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, J. Math. Anal. Appl., 368, 2, 658-676, (2010) · Zbl 1352.35093 · doi:10.1016/j.jmaa.2010.02.022
[10] Cogan, N. G.; Cortez, R.; Fauci, L., Modeling physiological resistance in bacterial biofilms, Bull. Math. Biol., 67, 831-853, (2005) · Zbl 1334.92255 · doi:10.1016/j.bulm.2004.11.001
[11] Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial biofilms: a common cause of persistent infections, Science, 284, 5418, 1318-1322, (1999) · doi:10.1126/science.284.5418.1318
[12] Goyeau, B.; Lhuillier, D.; Gobin, D.; Velarde, M. G., Momentum transport at a fluid – porous interface, Intl J. Heat Mass Transfer, 46, 4071-4081, (2003) · Zbl 1065.76606 · doi:10.1016/S0017-9310(03)00241-2
[13] Grosan, T.; Posteinicu, A.; Pop, I., Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium, Trans. Porous Med., 81, 89-103, (2010) · doi:10.1007/s11242-009-9389-y
[14] Higdon, J. J. L.; Kojima, M., On the calculation of Stokes’ flow past porous particles, Intl J. Multiphase Flow, 7, 6, 719-727, (1981) · Zbl 0484.76049 · doi:10.1016/0301-9322(81)90041-0
[15] Howes, F. A.; Whitaker, S., The spatial averaging theorem revisited, Chem. Engng Sci., 40, 8, 1387-1392, (1985) · doi:10.1016/0009-2509(85)80078-6
[16] Klapper, I.; Dockery, J., Mathematical description of microbial biofilms, SIAM Rev., 52, 2, 221-265, (2010) · Zbl 1191.92065 · doi:10.1137/080739720
[17] Kohr, M.; Wendland, W. L.; Sekhar, G. P. R., Boundary integral equations for two-dimensional low Reynolds number flow past a porous body, Math. Meth. Appl. Sci., 32, 8, 922-962, (2009) · Zbl 1161.76457 · doi:10.1002/mma.1074
[18] Larson, R. E.; Higdon, J. J. L., Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow, J. Fluid Mech., 166, 449-472, (1986) · Zbl 0596.76098 · doi:10.1017/S0022112086000228
[19] Larson, R. E.; Higdon, J. J. L., Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow, J. Fluid Mech., 178, 119-136, (1987) · Zbl 0633.76097 · doi:10.1017/S0022112087001149
[20] Lowe, R. J.; Shavit, U.; Falter, J. L.; Koseff, J. R.; Monismith, S. G., Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches, Limnol. Oceanogr., 53, 6, 2668-2680, (2008) · doi:10.4319/lo.2008.53.6.2668
[21] Manem, J.; Rittmann, B., Removing trace level organic pollutants in a biological filter, J. Amer. Water Works, 84, 4, 152-157, (1992)
[22] Merrikh, A. A.; Mohamad, A. A., Non-Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media, Intl J. Heat Mass Transfer, 45, 4305-4313, (2002) · Zbl 1087.76556 · doi:10.1016/S0017-9310(02)00135-7
[23] Neale, G.; Nader, W., Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium, Can. J. Chem. Engng, 52, 475-478, (1974) · doi:10.1002/cjce.5450520407
[24] Ochoa-Tapia, J. A., Momentum transfer at the boundary between a porous medium and a homogeneous fluid - I. Theoretical development, Intl J. Heat Mass Transfer, 38, 14, 2635-2646, (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00346-W
[25] Ochoa-Tapia, J. A.; Whitaker, S., Momentum transfer at the boundary between a porous medium and a homogeneous fluid II: comparison with experiment, Intl J. Heat Mass Transfer, 38, 14, 2647-2655, (1995) · Zbl 0923.76320 · doi:10.1016/0017-9310(94)00347-X
[26] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow, (1992), Cambridge University Press · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[27] Pozrikidis, C., Interfacial dynamics for Stokes flow, J. Comput. Phys., 169, 250-301, (2001) · Zbl 1046.76012 · doi:10.1006/jcph.2000.6582
[28] Richardson, S., A model for the boundary condition of a porous material. Part 2, J. Fluid Mech., 49, 327-336, (1971) · Zbl 0235.76045 · doi:10.1017/S002211207100209X
[29] Saffman, P. G., On the boundary condition at the surface of porous medium, Stud. Appl. Maths, 50, 2, 93-103, (1971) · Zbl 0271.76080 · doi:10.1002/sapm197150293
[30] Sahraoui, M.; Kaviany, M., Slip and no-slip velocity boundary conditions at interface of porous, plain media, Intl J. Heat Mass Transfer, 35, 4, 927-943, (1992) · Zbl 0757.76070 · doi:10.1016/0017-9310(92)90258-T
[31] Taylor, G. I., A model for the boundary condition of a porous material. Part 1, J. Fluid Mech., 49, 319-326, (1971) · Zbl 0254.76093 · doi:10.1017/S0022112071002088
[32] Tlupova, S.; Cortez, R., Boundary integral solutions of coupled Stokes and Darcy flows, J. Comput. Phys., 228, 1, 158-179, (2009) · Zbl 1188.76232 · doi:10.1016/j.jcp.2008.09.011
[33] Valdés-Parada, F. J.; Aguliar-Madera, C. G.; Ochoa-Tapia, J. A.; Goyeau, B., Velocity and stress jump condition between a porous medium and a fluid, Adv. Water Resour., 62, 327-339, (2013) · doi:10.1016/j.advwatres.2013.08.008
[34] Valdés-Parada, F. J.; Alvarez-Ramirez, J.; Goyeau, B.; Ochoa-Tapia, J. A., Computation of jump coefficient for momentum transfer between a porous medium and a fluid using a closed genetalized transfer equation, Trans. Porous Med., 78, 439-457, (2009)
[35] Valdés-Parada, F. J.; Goyeau, B.; Ochoa-Tapia, J. A., Jump momentum boundary condition at a fluid – porous dividing surface: derivation of the closure problem, Chem. Engng Sci., 62, 4025-4039, (2007) · doi:10.1016/j.ces.2007.04.042
[36] Whitaker, S., Flow in porous media I: a theoretical derivation of Darcy’s law, Trans. Porous Med., 1, 1, 3-25, (1969) · doi:10.1007/BF01036523
[37] Yano, H.; Kieda, A.; Mizuno, I., The fundamental solution of Brinkman’s equation in two dimensions, Fluid Dyn. Res., 7, 3, 109-118, (1991) · doi:10.1016/0169-5983(91)90051-J
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.