×

Commutative partial differential operators. (English) Zbl 0980.35141

Summary: In one variable, it is possible to describe explicitly the differential operators that commute with a given one, at least when the centralizer of the given operator has rank 1. So far, a generalization of the theory to several variables has been developed (inexplicitly) only for matrices, whose size increases with the number of variables. We propose to develop an algebraic theory of commuting partial differential operators by formulating a generalization of the one-variable techniques, in particular Darboux transformations and differential resultants. In this paper, we present a counterexample to a one-variable feature of maximal-commutative rings and some facts, examples and questions on differential resultants.

MSC:

35Q51 Soliton equations
47F05 General theory of partial differential operators
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions

References:

[1] Berest, Yu.; Kasman, A., D-modules and Darboux transformations, Lett. Math. Phys., 43, 279-294 (1998) · Zbl 0979.13025
[2] Braverman, A.; Etingof, P.; Gaitsgory, D., Quantum integrable systems and differential Galois theory, Transform. Groups, 2, 31-56 (1997) · Zbl 0901.58021
[3] Burchnall, J. L.; Chaundy, T. W., Commutative ordinary differential operators, Proc. Lond. Math. Soc., 211, 420-440 (1923) · JFM 49.0311.03
[4] Burchnall, J. L.; Chaundy, T. W., Commutative ordinary differential operators, Proc. R. Soc. A, 118, 557-583 (1928) · JFM 54.0439.01
[5] Carrà Ferro, G., A resultant theory for systems of linear partial differential equations, Lie Groups Appl., 1, 1, 47-55 (1994) · Zbl 0936.35013
[6] Chalykh, O. A.; Veselov, A. P., Commutative rings of partial differential operators and Lie algebras, Commun. Math. Phys., 125, 597-611 (1990) · Zbl 0746.47025
[7] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer, Berlin, 1998.; D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer, Berlin, 1998. · Zbl 0920.13026
[8] Darboux, G., Sur une proposition relative aux equation lineaires, Compt. Rend., 94, 1456 (1882) · JFM 14.0264.01
[9] Duistermaat, J. J.; Grünbaum, F. A., Differential equations in the spectral parameter, Commun. Math. Phys., 103, 177-240 (1986) · Zbl 0625.34007
[10] F.A. Grünbaum, Bispectral Musings CRM Proceedings and Lecture Notes, Vol. 14, American Mathematical Society, Providence, RI, 1988, pp. 31-46.; F.A. Grünbaum, Bispectral Musings CRM Proceedings and Lecture Notes, Vol. 14, American Mathematical Society, Providence, RI, 1988, pp. 31-46.
[11] Hörmander, L., The Weyl calculus of pseudodifferential operators, Commun. Pure Appl. Math., 32, 360-444 (1979)
[12] Horozov, E.; Kasman, A., Darboux transformations for bispectral quantum integrable systems, Lett. Math. Phys., 49, 131-143 (1999) · Zbl 0939.37040
[13] Kasman, A., Kernel inspired factorizations of partial differential operators, J. Math. Anal. Appl., 234, 2, 580-591 (1999) · Zbl 0934.35027
[14] Krichever, I. M., The integration of nonlinear equations by methods of algebraic geometry, Funct. Anal. Appl., 12, 12-26 (1977) · Zbl 0368.35022
[15] F.S. Macaulay, The algebraic theory of modular systems, Cambridge Tracts Math. Math. Phys. 19 (1916) 13.; F.S. Macaulay, The algebraic theory of modular systems, Cambridge Tracts Math. Math. Phys. 19 (1916) 13. · JFM 46.0167.01
[16] V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer Series on Nonlinear Dynamics, Springer, Berlin, 1991.; V.B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer Series on Nonlinear Dynamics, Springer, Berlin, 1991. · Zbl 0744.35045
[17] Nakayashiki, A., Structure of Baker-Akhiezer modules of principally polarized abelian varieties, commuting partial differential operators and associated integrable systems, Duke Math. J., 62, 2, 315-358 (1991) · Zbl 0732.14008
[18] Nakayashiki, A., Commuting partial differential operators and vector bundles over abelian varieties, Am. J. Math., 116, 1, 65-100 (1994) · Zbl 0809.14016
[19] E. Previato, Another algebraic proof of Weil’s reciprocity, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (2) (1991) 167-171.; E. Previato, Another algebraic proof of Weil’s reciprocity, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl. 2 (2) (1991) 167-171. · Zbl 0739.30034
[20] E. Previato, Seventy years of spectral curves: 1923-1993, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, Vol. 1620, Springer, Berlin, 1996, pp. 419-481.; E. Previato, Seventy years of spectral curves: 1923-1993, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, Vol. 1620, Springer, Berlin, 1996, pp. 419-481. · Zbl 0851.35120
[21] F.J. Plaza Martin, Generalized KP Hierarchy for Several Variables, Preprint math/0008004.; F.J. Plaza Martin, Generalized KP Hierarchy for Several Variables, Preprint math/0008004.
[22] M.A. Shubin, in: M. Hazewinkel (Ed.), Pseudo-differential Operator, Entry in Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet Mathematical Encyclopaedia, Kluwer Academic Publishers, Dordrecht, MA, 1988.; M.A. Shubin, in: M. Hazewinkel (Ed.), Pseudo-differential Operator, Entry in Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet Mathematical Encyclopaedia, Kluwer Academic Publishers, Dordrecht, MA, 1988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.