×

Class incremental learning with KL constraint and multi-strategy exemplar selection for classification based on MMFA model. (English) Zbl 07897656

Summary: Class incremental learning (CIL) can learn new classes continuously by updating the model rather than retraining a model from scratch with all seen classes like traditional offline learning, therefore, CIL is more suitable for classification in dynamic environments, where new classes are captured progressively. However, the key knowledge of old classes will be lost due to the update mode of CIL, leading to the catastrophic forgetting (CF) problem. In this paper, a novel CIL method with Kullback-Leibler constraint and multi-strategy exemplar selection (CIL-KLMES) is proposed for classification based on max-margin factor analysis (MMFA) model. To handle the CF problem, CIL-KLMES imposes a Kullback-Leibler (KL) divergence term on the important parameters when updating the model to restrict the parameters’ distribution to be similar, thus preventing the updated model from deviating too much from the previous model and preserving the knowledge of old classes. Moreover, CIL-KLMES selects a few representative exemplars from old classes based on the robust description of data distribution and classification decision boundary. By replaying representative exemplars to update the model together with new class data, the key knowledge of old classes can be further preserved. Therefore, the CF problem can be alleviated sufficiently. Experimental results demonstrate the effectiveness of CIL-KLMES.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

CIFAR; Doc2Vec
Full Text: DOI

References:

[1] Du, L.; Liu, H.; Bao, Z., Radar hrrp statistical recognition: parametric model and model selection, IEEE Trans. Signal Process., 56, 5, 1931-1944, 2008 · Zbl 1390.94163
[2] Du, L.; Liu, H.; Bao, Z.; Zhang, J., A two-distribution compounded statistical model for radar hrrp target recognition, IEEE Trans. Signal Process., 54, 6, 2226-2238, 2006 · Zbl 1374.94656
[3] Du, L.; Liu, H.; Wang, P.; Feng, B.; Bao, Z., Noise robust radar hrrp target recognition based on multitask factor analysis with small training data size, IEEE Trans. Signal Process., 60, 7, 3546-3559, 2012 · Zbl 1393.94553
[4] He, H.; Du, L.; Liu, Y.; Ding, J., Similarity preserving multi-task learning for radar target recognition, Inf. Sci., 436-437, 388-402, 2018
[5] Du, L.; Chen, J.; Hu, J.; Li, Y.; He, H., Statistical modeling with label constraint for radar target recognition, IEEE Trans. Aerosp. Electron. Syst., 56, 2, 1026-1044, 2020
[6] Zhang, X.; Chen, B.; Liu, H.; Zuo, L.; Feng, B., Infinite max-margin factor analysis via data augmentation, Pattern Recognit., 52, 17-32, 2016 · Zbl 1394.68331
[7] Jacobs, S. P.; O’Sullivan, J. A., Automatic target recognition using sequences of high resolution radar range-profiles, IEEE Trans. Aerosp. Electron. Syst., 36, 2, 364-381, 2000
[8] Kim, D.; Seo, D.; Cho, S.; Kang, P., Multi-co-training for document classification using various document representations: tf-idf, lda, and doc2vec, Inf. Sci., 477, 15-29, 2019
[9] Wang, F.; Zhou, R.; Feng, Y.; Lu, X., Bayesian sparse joint dynamic topic model with flexible lead-lag order, Inf. Sci., 616, 392-410, 2022 · Zbl 1535.91027
[10] Lu, W.; Zhang, Y.; Xu, C.; Lin, C.; Huo, Y., A deep learning-based satellite target recognition method using radar data, Sensors, 19, 9, 2019
[11] Yang, X.; Wu, T.; Wang, N.; Huang, Y.; Song, B.; Gao, X., Hcnn-psi: a hybrid cnn with partial semantic information for space target recognition, Pattern Recognit., 108, Article 107531 pp., 2020
[12] Li, C.; Li, Y.; Zhu, W.; Yang, J.; Qu, W.; He, Y., Semisupervised space target recognition algorithm based on integrated network of imaging and recognition in radar signal domain, IEEE Trans. Aerosp. Electron. Syst., 60, 1, 506-524, 2024
[13] Li, Z.; Hoiem, D., Learning without forgetting, IEEE Trans. Pattern Anal. Mach. Intell., 40, 12, 2935-2947, 2018
[14] Lee, S. W.; Kim, J. H.; Jun, J.; Ha, J. W.; Zhang, B. T., Overcoming Catastrophic Forgetting by Incremental Moment Matching, Advances in Neural Information Processing Systems, vol. 30, 2017
[15] Rebuffi, S. A.; Kolesnikov, A.; Sperl, G.; Lampert, C. H., icarl: incremental classifier and representation learning, (2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017)
[16] Paragliola, G., A federated learning-based approach to recognize subjects at a high risk of hypertension in a non-stationary scenario, Inf. Sci., 622, 16-33, 2023
[17] Wang, Z.; Zhang, Y.; Xu, X.; Fu, Z.; Yang, H.; Du, W., Federated probability memory recall for federated continual learning, Inf. Sci., 629, 551-565, 2023
[18] Zhong, Y.; Zhou, J.; Li, P.; Gong, J., Dynamically evolving deep neural networks with continuous online learning, Inf. Sci., 646, Article 119411 pp., 2023
[19] Dang, S.; Cao, Z.; Cui, Z.; Pi, Y.; Liu, N., Class boundary exemplar selection based incremental learning for automatic target recognition, IEEE Trans. Geosci. Remote Sens., 58, 8, 5782-5792, 2020
[20] Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran, D.; Hadsell, R., Overcoming catastrophic forgetting in neural networks, Proc. Natl. Acad. Sci. USA, 114, 3521-3526, 2017 · Zbl 1404.92015
[21] Chen, Y.-T.; Chuang, Y.-C.; Chang, L.-S.; Wu, A.-Y., S-qr-elm: Scalable Qr-Decomposition-Based Extreme Learning Machine Engine Supporting Online Class-Incremental Learning for Ecg-Based User Identification, 2023
[22] Dhar, P.; Singh, R. V.; Peng, K. C.; Wu, Z.; Chellappa, R., Learning without memorizing, (Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019), 5133-5141
[23] Boschini, M.; Bonicelli, L.; Buzzega, P.; Porrello, A.; Calderara, S., Class-incremental continual learning into the extended der-verse, IEEE Trans. Pattern Anal. Mach. Intell., 45, 5497-5512, 2023
[24] Yan, S.; Xie, J.; He, X., Der: dynamically expandable representation for class incremental learning, (2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021), 3013-3022
[25] Li, B.; Cui, Z.; Sun, Y.; Yang, J.; Cao, Z., Density coverage-based exemplar selection for incremental sar automatic target recognition, IEEE Trans. Geosci. Remote Sens., 61, 1-13, 2023
[26] Fu, Z.; Wang, Z.; Xu, X.; Yang, M.; Chi, Z.; Ding, W., Semantic alignment with self-supervision for class incremental learning, Knowl.-Based Syst., 282, Article 111114 pp., 2023
[27] Xiong, W.; Wang, Y.; Cheng, L., Fisher discriminant analysis random forest for online class incremental learning, (IEEE International Conference on Big Data and Cloud Computing, 2018), 597-604
[28] Chaudhry, A.; Dokania, P. K.; Ajanthan, T.; Torr, P. H., Riemannian walk for incremental learning: understanding forgetting and intransigence, (Proceedings of the European Conference on Computer Vision (ECCV), vol. 11215, 2018, LNCS)
[29] Qiu, Z.; Xu, L.; Wang, Z.; Wu, Q.; Meng, F.; Li, H., Ism-net: mining incremental semantics for class incremental learning, Neurocomputing, 523, 130-143, 2023
[30] Sun, W.; Li, Q.; Zhang, J.; Wang, D.; Wang, W.; Geng, Y., Exemplar-free class incremental learning via discriminative and comparable parallel one-class classifiers, Pattern Recognit., 140, 109561, 2023
[31] Masana, M.; Liu, X.; Twardowski, B.; Menta, M.; Bagdanov, A. D.; van de Weijer, J., Class-incremental learning: survey and performance evaluation on image classification, IEEE Trans. Pattern Anal. Mach. Intell., 45, 5, 5513-5533, 2023
[32] Welling, M., Herding Dynamical Weights to Learn, ACM International Conference Proceeding Series, vol. 382, 2009
[33] Li, Y.; Maguire, L., Selecting critical patterns based on local geometrical and statistical information, IEEE Trans. Pattern Anal. Mach. Intell., 33, 6, 1189-1201, 2011
[34] Hoffman, M. D.; Blei, D. M.; Wang, C.; Paisley, J., Stochastic variational inference, J. Mach. Learn. Res., 14, 2013 · Zbl 1317.68163
[35] Amari, S., Backpropagation and stochastic gradient descent method, Neurocomputing, 5, 4, 185-196, 1993 · Zbl 0782.68094
[36] Beal, M. J., Variational Algorithms for Approximate Bayesian Inference, 2003, PhD Thesis
[37] Pattern Recognition and Machine Learning. Pattern Recognition and Machine Learning, J. Electron. Imaging, 16, 2007
[38] Du, L.; Chen, M.; Lucas, J.; Carin, L., Sticky hidden Markov modeling of comparative genomic hybridization, IEEE Trans. Signal Process., 58, 10, 5353-5368, 2010 · Zbl 1391.92014
[39] Polson, N. G.; Scott, S. L., Data augmentation for support vector machines, Bayesian Anal., 6, 2011 · Zbl 1330.62258
[40] Jensen, J. L.W. V., Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30, 175-193, 1906 · JFM 37.0422.02
[41] Webb, A. R., Statistical Pattern Recognition, 2003
[42] Morgan, B. J.T.; Devroye, L., Non-uniform random variate generation, Biometrics, 44, 1988
[43] Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J. L., A public domain dataset for human activity recognition using smartphones, (The European Symposium on Artificial Neural Networks, 2013)
[44] Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M. A.; Homer, M. L.; Huerta, R., Chemical gas sensor drift compensation using classifier ensembles, Sens. Actuators B, Chem., 166-167, 320-329, 2012
[45] Krizhevsky, A., Learning Multiple Layers of Features from Tiny Images, 2009, University of Toronto
[46] Dalal, N.; Triggs, B., Histograms of oriented gradients for human detection, (2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, 2005), 886-893
[47] Khwildi, R.; Zaid, A. O., Color based hdr image retrieval using hsv histogram and color moments, (2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 2018), 1-5
[48] Yang, L.; Shami, A., On hyperparameter optimization of machine learning algorithms: theory and practice, Neurocomputing, 415, 295-316, 2020
[49] Chen, R.; Jing, X.-Y.; Wu, F.; Zheng, W.; Hao, Y., Task-specific parameter decoupling for class incremental learning, Inf. Sci., 651, Article 119731 pp., 2023
[50] Maaten, L. V.D.; Hinton, G., Visualizing data using t-sne, J. Mach. Learn. Res., 9, 86, 2579-2605, 2008 · Zbl 1225.68219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.