×

Inequalities for totally nonnegative matrices: Gantmacher-Krein, Karlin, and Laplace. (English) Zbl 07850925

This paper focuses on determinantal inequalities for totally non-negative (TN) matrices, which are real matrices with all minors being non-negative. The authors introduce index-row and index-column operations that apply to determinantal inequalities for TN matrices, resulting in new additive inequalities embedded within classical identities by Laplace and Karlin. Additionally, they explore multiplicative inequalities and provide a novel classification of these inequalities, enhancing the classification by S. M. Fallat et al. [Adv. Appl. Math. 30, No. 3, 442–470 (2003; Zbl 1030.15021)] and M. Skandera [J. Algebr. Comb. 20, No. 2, 195–211 (2004; Zbl 1066.05089)].
The paper also presents an algorithm that identifies certain determinantal expressions that do not form an inequality for TN matrices and characterizes multiplicative inequalities comparing products of pairs of minors. The authors describes in details the connection between TN matrices and planar networks, using this relationship to prove their results. They conclude with a discussion on the Barrett-Johnson determinantal inequality and its implications for future research in the field. This paper is well-written, and provides interesting results in the area of determinantal inequalities and totally non-negative matrices.

MSC:

15A45 Miscellaneous inequalities involving matrices
15A15 Determinants, permanents, traces, other special matrix functions
15B48 Positive matrices and their generalizations; cones of matrices
39B62 Functional inequalities, including subadditivity, convexity, etc.

References:

[1] Ando, T., Totally positive matrices, Linear Algebra Appl., 90, 165-219, 1987 · Zbl 0613.15014
[2] Barrett, W. W.; Johnson, C. R., Determinantal inequalities for positive-definite matrices, Discrete Math., 115, 97-106, 1993 · Zbl 0786.15026
[3] Berenstein, A.; Fomin, S.; Zelevinsky, A., Parameterizations of canonical bases and totally positive matrices, Adv. Math., 122, 49-149, 1996 · Zbl 0966.17011
[4] Boocher, A.; Froehle, B., On generators of bounded ratios of minors for totally positive matrices, Linear Algebra Appl., 428, 1664-1684, 2008 · Zbl 1143.15020
[5] Brenti, F., Combinatorics and total positivity, J. Comb. Theory, Ser. A, 71, 175-218, 1995 · Zbl 0851.05095
[6] Cauchy, A., Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment, J. Éc. Polytech.. J. Éc. Polytech., Oeuvres Comp. Ser. 2, 1, 91-169, 1905
[7] Cayley, A., Note to a paper by H.W.L. Tanner, A theorem relating to Pfaffians, Messenger Math., 8, 59-80, 1878/79
[8] Cryer, C. W., The LU-factorization of totally positive matrices, Linear Algebra Appl., 7, 83-92, 1973 · Zbl 0274.15004
[9] Cryer, C. W., Some properties of totally positive matrices, Linear Algebra Appl., 15, 1-25, 1976 · Zbl 0337.15017
[10] Fallat, S. M., Bidiagonal factorizations of totally nonnegative matrices, Am. Math. Mon., 109, 697-712, 2001 · Zbl 1032.15015
[11] Fallat, S. M.; Gekhtman, M. I., Jordan structures of totally nonnegative matrices, Can. J. Math., 57, 82-98, 2005 · Zbl 1072.15029
[12] Fallat, S. M.; Gekhtman, M. I.; Johnson, C. R., Spectral structures of irreducible totally nonnegative matrices, SIAM J. Matrix Anal. Appl., 22, 627-645, 2000 · Zbl 0970.15013
[13] Fallat, S. M.; Gekhtman, M. I.; Johnson, C. R., Multiplicative principal-minor inequalities for totally nonnegative matrices, Adv. Appl. Math., 30, 442-470, 2003 · Zbl 1030.15021
[14] Fallat, S. M.; Hall, H. T.; Johnson, C. R., Characterization of product inequalities for principal minors of M-matrices and inverse M-matrices, Q. J. Math., 49, 196, 451-458, 1998 · Zbl 0921.15012
[15] Fallat, S. M.; Johnson, C. R., Determinantal inequalities: ancient history and recent advances, Contemp. Math., 259, 199-212, 2000 · Zbl 0965.15022
[16] Fallat, S. M.; Johnson, C. R., Totally Nonnegative Matrices, 2011, Princeton University Press: Princeton University Press Princeton, USA · Zbl 1390.15001
[17] Fomin, S.; Zelevinsky, A., Total positivity: tests and parameterizations, Math. Intell., 22, 1, 23-33, 2000 · Zbl 1052.15500
[18] Gantmacher, F. R.; Krein, M. G., Sur les Matrices Complement Non-negatives et Oscillatories, Comput. Math., 4, 445-476, 1937 · JFM 63.0038.04
[19] Gantmacher, F. R.; Krein, M. G., Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. Mathematische Lehrbücher und Monographien, I, 1960, Abteilung, Bd. V. Akademie-Verlag: Abteilung, Bd. V. Akademie-Verlag Berlin · Zbl 0088.25103
[20] Gantmacher, F. R.; Krein, M. G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, 2002, AMS Chelsea Publishing, American Mathematical Society: AMS Chelsea Publishing, American Mathematical Society Providence, RI, Translation based on the 1941 Russian original, Edited and with a preface by Alex Eremenko · Zbl 1002.74002
[21] Gasca, M.; Micchelli, C. A., Total Positivity and Its Applications, Mathematics and Its Applications, vol. 359, 1996, Kluwer Academic · Zbl 0884.00045
[22] Gasca, M.; Peña, J. M., Total positivity and neville elimination, Linear Algebra Appl., 165, 25-44, 1992 · Zbl 0749.15010
[23] Gasca, M.; Peña, J. M., On factorizations of totally positive matrices, (Gasca, M.; Micchelli, C. A., Total Positivity and Its Applications. Total Positivity and Its Applications, Mathematics and Its Applications, vol. 359, 1996, Kluwer Academic), 109-130 · Zbl 0891.15017
[24] Gekhtman, M.; Soskin, D., On bounded ratios of minors of totally positive matrices, 2022, preprint
[25] Gessel, I.; Viennot, G., Binomial determinants, paths, and hook length formulae, Adv. Math., 58, 300-321, 1985 · Zbl 0579.05004
[26] Horn, R. A.; Johnson, C. R., Matrix Analysis, 1985, Cambridge University Press: Cambridge University Press New York · Zbl 0576.15001
[27] Karlin, S., Total Positivity, vol. I, 1968, Stanford University Press: Stanford University Press Stanford · Zbl 0219.47030
[28] Karlin, S.; McGregor, G., Coincidence probabilities, Pac. J. Math., 9, 1141-1164, 1959 · Zbl 0092.34503
[29] Koteljanskii, D. M., The theory of nonnegative and oscillating matrices, Ukr. Mat. Ž.. Ukr. Mat. Ž., Transl. Am. Math. Soc. (2), 27, 1-8, 1963, (in Russian); English transl.: · Zbl 0128.01802
[30] Koteljanskii, D. M., A property of sign-symmetric matrices, Mat. Nauk (N. S.). Mat. Nauk (N. S.), Transl. Am. Math. Soc. (2), 2, 27, 19-24, 1963, (in Russian); English transl.: · Zbl 0128.01804
[31] Laplace, S., Recherches sur le calcul integral et sur le systeme du monde, Mem. Acad. Sci. Paris, 267-376, 1772, Oeuures, vol. 8, pp. 365-466
[32] Lindstrom, B., On the vector representations of induced matroids, Bull. Lond. Math. Soc., 5, 85-90, 1973 · Zbl 0262.05018
[33] Lusztig, G., Total positivity in reductive groups, (Lie Theory and Geometry: in Honor of Bertram Kostant. Lie Theory and Geometry: in Honor of Bertram Kostant, Progress in Mathematics, vol. 123, 1994, Birkhäuser: Birkhäuser Boston), 531-568 · Zbl 0845.20034
[34] Marcus, M.; Minc, H., A Survey of Matrix Theory and Matrix Inequalities, 1964, Dover Publications: Dover Publications New York · Zbl 0126.02404
[35] Marsh, R. J.; Scott, J. S., Twists of Plücker coordinates as dimer partition functions, Commun. Math. Phys., 341, 3, 821-884, 2016 · Zbl 1341.13009
[36] Muller, G.; Speyer, D. E., The twist for positroid varieties, Proc. Lond. Math. Soc. (3), 115, 5, 1014-1071, 2017 · Zbl 1408.14154
[37] Mühlbach, G.; Gasca, M., A generalization of Sylvester’s identity on determinants and some applications, Linear Algebra Appl., 66, 221-234, 1985 · Zbl 0576.15005
[38] Mühlbach, G., On extending determinantal identities, Linear Algebra Appl., 132, 145-162, 1990 · Zbl 0702.15002
[39] Muir, T., Theory of Determinants in the Historical Order of Development (4 Volumes), 1906, MacMillan, 1913, 1920, and 1923; Dover (l966). Contributions to the History of Determinants, 1900-1920; Blackie, 1930
[40] Pinkus, A., Totally Positive Matrices, 2010, Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1185.15028
[41] Rhoades, B.; Skandera, M., Temperley-Lieb immanants, Ann. Comb., 9, 4, 451-495, 2005 · Zbl 1089.15011
[42] Rhoades, B.; Skandera, M., Kazhdan-Lusztig immanants and products of matrix minors, J. Algebra, 304, 2, 793-811, 2006 · Zbl 1129.15005
[43] Schoenberg, I. J., Uber Variationsvermindernde Lineare Transformationen, Math. Z., 32, 321-328, 1930 · JFM 56.0106.06
[44] Skandera, M., Inequalities in products of minors of totally nonnegative matrices, J. Algebraic Comb., 20, 195-211, 2004 · Zbl 1066.05089
[45] Skandera, M.; Soskin, D., Barrett-Johnson inequalities for totally nonnegative matrices, 2022, preprint
[46] Whitney, A., A reduction theorem for totally positive matrices, J. Anal. Math., 2, 88-92, 1952 · Zbl 0049.17104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.