×

An inexact Newton-Lanczos method for solving a system of nonlinear equations. (Chinese. English summary) Zbl 07828152

Summary: We present an inexact Newton-Krylov subspace method with incomplete line search technique for solving symmetric nonlinear equations, in which the Krylov subspace method uses the Lanczos-type decomposition technique. The iterative direction is obtained by approximately solving the Newton’s equations of the nonlinear equations using the Lanczos method. The global convergence and local superlinear convergence rate of the proposed algorithm are established under some reasonable conditions. Finally, the numerical results show the effectiveness of the proposed algorithm.

MSC:

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Full Text: DOI

References:

[1] An H. B., On convergence of the additive Schwarz preconditioned inexact Newton method, SIAM J. Numer. Anal., 2005, 43(5): 1850-1871. · Zbl 1111.65046
[2] Andrei N., An unconstrained optimization test functions collection, Adv. Model. Optim., 2008, 10(1): 147-161. · Zbl 1161.90486
[3] Arnoldi W. E., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 1951, 9: 17-29. · Zbl 0042.12801
[4] Bellavia S., Morini B., A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput., 2001, 23(3): 940-960. · Zbl 0998.65053
[5] Birgin E. G., Krejić N., Martínez J. M., Globally convergent inexact quasi-Newton methods for solving nonlinear systems, Numer. Algorithms, 2003, 32(2-4): 249-260. · Zbl 1034.65032
[6] Brezinski C., Redivo Zaglia M., A new presentation of orthogonal polynomials with application to their computation, Numer. Algorithms, 1991, 1: 207-221. · Zbl 0752.65011
[7] Brezinski C., Redivo Zagliab M., Sadok H., et al., The matrix and polynomial approachesto Lanczos-type algorithms, Numer. Algorithms, 1991, 1: 261-284. · Zbl 0748.65033
[8] Brown P. N., A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput., 1991, 12(1): 58-78. · Zbl 0719.65022
[9] Brown P. N., Saad Y., Global convergent techniques in nonlinear Newton-Krylov algorithms, Tech. Rep. 89.57, Research Institute for Advanced Computer Science, NASA’s Ames Research Center, November 1989.
[10] Brown P. N., Saad Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Stat. Comput., 1990, 11(3): 450-481. · Zbl 0708.65049
[11] Brown P. N., Saad Y., Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J. Optim., 1994, 4(2): 297-330. · Zbl 0814.65048
[12] Dembo R. S., Eisenstat S. C., Steihaug T., Inexact Newton methods, SIAM J. Numer. Anal., 1982, 19(2): 400-408. · Zbl 0478.65030
[13] Dolan E. D., Moré J. J., Benchmarking optimization software with performance profiles, Math. Program., 2002, 91: 201-213. · Zbl 1049.90004
[14] Eisenstat S. C., Walker H. F., Globally convergent inexact Newton methods, SIAM J. Optim., 1994, 4(2): 393-422. · Zbl 0814.65049
[15] Eisenstat S. C., Walker H. F., Choosing the forcing term in an inexact Newton method, SIAM J. Sci. Comput., 1996, 17(1): 16-32. · Zbl 0845.65021
[16] Feng D., Pulliam T. H., Tensor-GMRES method for large systems of nonlinear equations, SIAM J. Optim., 1997, 7(3): 757-779. · Zbl 0911.65044
[17] Kelley C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995. · Zbl 0832.65046
[18] La Cruz W., Raydan M., Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 2003, 18(5): 583-599. · Zbl 1069.65056
[19] Lanczos C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 1950, 45: 255-282.
[20] Lanczos C., Solution of systems of linear equations by minimized iteration, J. Res. Natl. Bur. Stand., 1952, 49: 33-53.
[21] Meurant G., On the residual norm in FOM and GMRES, SIAM J. Matrix Anal. Appl., 2011, 32(2): 394-411. · Zbl 1298.65061
[22] Paige C. C., The computation of eigenvalues and eigenvectors of very large sparse matrices, University of London, Ph. D. Thesis., London, 1975.
[23] Saad Y., Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Lin. Alg. Appl., 1980, 34: 269-295. · Zbl 0456.65017
[24] Saad Y., Schultz M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 1986, 7(3): 856-869. · Zbl 0599.65018
[25] Taheria S., Mammadov M., Seifollahi S., Globally convergent algorithms for solving unconstrained optimiza-tion problems, Optimization, 2015, 64(2): 249-263. · Zbl 1311.90182
[26] Van Der Vorst H.A., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 1992, 13(2): 631-644. · Zbl 0761.65023
[27] Zhang Y., Zhu D. T., Inexact Newton method via Lanczos decomposed technique for solving box-constrained nonlinear systems, Appl. Math. Mech. Engl. Ed., 2010, 31: 1593-1602. · Zbl 1275.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.