×

Geometric construction of Pythagorean hodograph C-curves. (Chinese. English summary) Zbl 07828154

Summary: We study the geometric characteristics of C-Bézier curves that possess the Pythagorean Hodograph (PH) property. Based on the algebraic necessary and sufficient conditions for PH C-curves, we prove that a C-Bézier curve is a PH C-curve if and only if the interior angles of its control polygon are equal, and the second leg length of the control polygon is the geometric mean of the first and the last ones. Our main idea is to represent a planar parametric curve in complex form. We claim that the geometric characteristics of PH C-curves are quite similar to polynomial PH curves, which can be used to identify PH C-curves and their constructions. As an application, we give some examples of \(G^1\) Hermite interpolation using PH C-curves. We point out that there are no more than two PH C-curves for any given \(G^1\) Hermite conditions.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] Albrecht G., Beccari C. V., Canonne J. C., et al., Pythagorean-hodograph B-spline curves, Comput. Aided Geom. Design, 2017, 57: 57-77. · Zbl 1379.65011
[2] Albrecht G., Beccari C. V., Romani L., Spatial Pythagorean-hodograph B-spline curves and 3d point data interpolation, Comput. Aided Geom. Design, 2020, 80: 101868. · Zbl 1505.65042
[3] Byrtus M., Bastl B., G 1 Hermite interpolation by PH cubics revisited, Comput. Aided Geom. Design, 2010, 27: 622-630. · Zbl 1205.65032
[4] Chen Q. Y., Wang G. Z., A class of Bézier like curves, Comput. Aided Geom. Design, 2003, 20(3): 29-39. · Zbl 1069.65514
[5] Chen W., Cao J., Wang G. Z., Pythagorean Hodograph C-curves (in Chinese), J. Comput. Aided Design & Graph, 2007, 19(7): 822-827.
[6] Elber G., Lee I. K., Kim M. S., Comparing offset curve approximation methods, IEEE Comput. Grap. Appl., 1997, 17: 62-71.
[7] Fang L. C., Peng Y. L., Li Y. J., et al., Classification of polynomial minimal surfaces, Comput. Aided Geom. Design, 2022, 96: 102106. · Zbl 1496.65023
[8] Fang L. C., Wang G. Z., C 1 Hermite interpolation using sextic PH curves, Sci. Sin. Math., 2014, 44: 799-804. · Zbl 1488.65032
[9] Fang L. C., Wang G. Z., Geometric characteristics of planar quintic Pythagorean-hodograph curves, J. of Comput. and Appl. Math., 2018, 330: 117-127. · Zbl 1377.53004
[10] Farouki R. T., al-Kandari M., Sakkalis T., Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math., 2002, 17: 369-383. · Zbl 1001.41003
[11] Farouki R. T., Construction of G 2 rounded corners with Pythagorean-hodograph curves, Comput. Aided Geom. Design, 2014, 31: 127-139. · Zbl 1293.65027
[12] Farouki R. T., Pythagorean Hodograph Curves: Algebra and Geometry Inseparable, Springer, Berlin, 2008. · Zbl 1144.51004
[13] Farouki R. T., Giannelli C., Sestini A., Identification and “reverse engineering” of Pythagorean-hodograph curves, Comput. Aided Geom. Design, 2015, 34: 21-36. · Zbl 1375.65022
[14] Farouki R. T., Manjunathaiah J., Nichlas D., et al., Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Comput. Aided Geom. Design, 1998, 30: 631-640. · Zbl 1049.68723
[15] Farouki R. T., Jüttler B., Manni C., Pythagorean-hodograph curves and related topics, Comput. Aided Geom. Design, 2008, 25: 4-5.
[16] Farouki R. T., Neff C. A., Hermite interpolation by Pythagorean hodograph quintics, Math. Comput., 1995, 64: 1589-1609. · Zbl 0847.68125
[17] Farouki R. T., Sakkalis T., Pythagorean hodographs, IBM J. Res. Dev., 1990, 34: 736-752.
[18] Farouki R. T., Šír Z., Rational Pythagorean-hodograph space curves, Comput. Aided Geom. Design, 2011, 28: 75-88. · Zbl 1210.65037
[19] Jüttler B., Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comput., 2001, 70: 1089-1111. · Zbl 0963.68210
[20] Kong J. H., Jeong S. P., Lee S., et al., C 1 Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design, 2008, 25: 214-229. · Zbl 1172.65309
[21] Kosinka J., Lavicka M., Pythagorean hodograph curves: a survey of recent advances, J. Geom. & Graph, 2014, 18: 23-43. · Zbl 1305.53008
[22] Li Y. J., Fang L. C., Cao J., et al., Identification of two classes of planar septic Pythagorean hodograph curves, J. Comput. Appl. Math., 2019, 348: 383-400. · Zbl 1407.65025
[23] Li Y. J., Fang L. C., Wang G. Z., G 2 [C 1 ] Hermite interpolation using septic PH curves (in Chinese), Sci. Sin. Inform., 2019, 49: 698-707.
[24] Maekawa T., An overview of offset curves and surfaces, Comput. Aided Design, 1999, 31: 165-173. · Zbl 1053.68747
[25] Meek D. S., Walton D. J., Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math., 1997, 81(2): 299-309. · Zbl 0880.65003
[26] Moon H. P., Minkowski Pythagorean hodographs, Comput. Aided Geom. Design, 2008, 16(99): 739-753. · Zbl 0997.65023
[27] Moon H. P., Farouki R. T., Choi H. I., Construction and shape analysis of PH quintic Hermite interpolants, Comput. Aided Geom. Design, 2001, 18: 93-115. · Zbl 0971.68186
[28] Morin G., Warren J., Weimer H., A subdivision scheme for surfaces of revolution, Comput. Aided Geom. Design, 2001, 18(5): 483-502. · Zbl 0970.68177
[29] Pham B., Offset curves and surfaces: a brief survey, Comput. Aided Design, 1992, 24: 223-229.
[30] Pottmann H., Rational curves and surfaces with rational offsets, Comput. Aided Geom. Design, 1995, 12: 175-192. · Zbl 0872.65011
[31] Sakkalis T., Farouki R. T., Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3, J. Comput. Appl. Math., 2012, 236: 4375-4382. · Zbl 1244.14023
[32] Šír Z., Classification of planar Pythagorean hodograph curves, Comput. Aided Geom. Design, 2020, 80: 101866. · Zbl 1505.65091
[33] Wang G. Z., Chen Q. Y., Zhou M. H., NUAT B-spline curves, Comput. Aided Geom. Design, 2004, 21(2): 193-205. · Zbl 1069.41510
[34] Wang G. Z., Fang L. C., On control polygons of quartic Pythagorean-hodograph curves, Comput. Aided Geom. Design, 2009, 26: 1006-1015. · Zbl 1205.65109
[35] Wang H., Zhu C. G., Li C. Y., G 2 Hermite interpolation by Pythagorean hodograph of degree six, J. Graph, 2016, 37: 155-165.
[36] Wang H., Zhu C. G., Li C. Y., Identification of planar sextic Pythagorean-hodograph curves, J. Math. Res. Appl., 2017, 37(1): 59-72. · Zbl 1399.65081
[37] Yong J. H., Zheng W., Geometric method for Hermite interpolation by a class of PH quintics (in Chinese), J. Comput. Aided Design & Comput. Graph, 2005, 17: 990-995.
[38] Zhang J. W., C-curves: an extension of cubic curves, Comput. Aided Geom. Design, 1996, 13(3): 199-217. · Zbl 0900.68405
[39] Zhang J. W., C-Bézier curves and surfaces, Graphical Models and Image Processing, 1999, 61(1): 2-15. · Zbl 0979.68578
[40] Zhang J. W., Two different forms of C-B-splines, Comput. Aided Geom. Design, 1997, 14(1): 31-41. · Zbl 0900.68418
[41] Zheng Z. H., Wang G. Z., Yang P., On control polygons of Pythagorean hodograph septic curves, J. Comput. Appl. Math., 2016, 296: 212-227. · Zbl 1330.65039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.