×

On the special identities of Gelfand-Dorfman algebras. (English) Zbl 07815488

A linear space \(V\) with two bilinear operations \(\circ\) and \([\cdot, \cdot]\) is called a Gelfand-Dorfman algebra if \((V, \circ)\) is a Novikov algebra, \((V,[\cdot, \cdot])\) is a Lie algebra, and the following additional identity holds: \[ b \circ [a,c]=[a, b \circ c]-[c, b \circ a]+[b, a] \circ c - [b,c] \circ a. \] Recall that the variety of Novikov algebras is defined by the following identities: \[ (a \circ b) \circ c - a \circ (b \circ c) = (b \circ a) \circ c - b \circ (a \circ c),\qquad (a \circ b) \circ c = (a \circ c) \circ b. \]
It is known that any Poisson algebra \((P, \circ, \{\cdot,\cdot\})\) with a derivation \(d\) equipped with operations \[ x \circ y = xy,\qquad [x, y]=\{x, y\}, \] is a Gelfand-Dorfman algebra denoted \(P^{(d)}\) [X. Xu, Southeast Asian Bull. Math. 27, No. 3, 561–574 (2003; Zbl 1160.17301)]. A Gelfand-Dorfman algebra \(V\) is said to be special if it can be embedded into a Gelfand-Dorfman algebra \(P^{(d)}\) for an appropriate differential Poisson algebra \(P\).
The main results of the paper are the following.
Corollary 1. The class of special Gelfand-Dorfman algebras forms a variety.
Theorem 2. Let \(V\) be a two-dimensional Gelfand-Dorfman algebra. Then \(V\) is special.
Corollary 3. All special identities of Gelfand-Dorfman algebras of degree \(<6\) are consequences of two following special identities \[ [c, a \circ d] \circ b + ([a,c] \circ d) \circ b = [c,(a \circ b) \circ d]-[c, a \circ b] \circ d \] and \[ 2([a, b] \circ c) \circ d = [b \circ c, a \circ d]-[a \circ c, b \circ d] + ([a, b \circ c]-[b, a \circ c]) \circ d + ([a, b \circ d]-[b, a \circ d]) \circ c. \]
Later, Sartayev proved that each transposed Poisson algebra satisfies these special identities [B. Sartayev, Commun. Math. 32, No. 2, Paper No. 3, 8 p. (2024; Zbl 07900710)].

MSC:

17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
17B63 Poisson algebras

Software:

operads

References:

[1] Cohn, P. M. (1954). Special Jordan algebras. Can. J. Math.6: 253-264. doi: · Zbl 0055.02704
[2] Bokut, L. A., Chen, Y. (2014). Gröbner-Shirshov bases and their calculation. Bull. Math. Sci.4: 325-395. doi: · Zbl 1350.13001
[3] Bokut, L. A., Chen, Y., Zhang, Z. (2017). Gröbner-Shirshov Bases Method for Gelfand-Dorfman-Novikov Algebras. J. Algebra Appl.16: 22. doi: · Zbl 1405.17060
[4] Bokut, L. A., Chen, Y., Zhang, Z. (2018). On free Gelfand-Dorfman-Novikov-Poisson algebras and a PBW theorem. J. Algebra. 500: 153-170. doi: · Zbl 1456.17001
[5] Bokut, L. A., Chen, Y., Zhang, Z. (2019). Some algorithmic problems for Poisson algebras. J. Algebra. 525: 562-588. doi: · Zbl 1462.17024
[6] Chen, Y., Chen, Y.-S., Li, Y. (2009). Composition-diamond lemma for differential algebras. Arab. J. Sci. Eng. Sect. A Sci. 34: 135-145.
[7] Gelfand, I. M., Dorfman, Y. I. (1979). Hamilton operators and associated algebraic structures. Funct. Anal. Appl.13: 13-30. · Zbl 0428.58009
[8] Zhevlakov, K. A., Slin’ko, A. M., Shestakov, I. P., Shirshov, A. I. (1982). Rings that are Nearly Associative. New York, NY: Academic Press. · Zbl 0487.17001
[9] Ginzburg, V., Kapranov, M. (1994). Koszul duality for operads. Duke Math. J.76: 203-272. doi: · Zbl 0855.18006
[10] Kolesnikov, P. S., Sartayev, B., Orazgaliev, A. (2019). Gelfand-Dorfman algebras, derived identities, and the Manin product of operads. J. Algebra. 539: 260-284. · Zbl 1448.17023
[11] Bremner, M. R., Dotsenko, V. (2016). Algebraic Operads: An Algorithmic Companion. Boca Raton, FL: Chapman and Hall/CRC. · Zbl 1350.18001
[12] Loday, J.-L., Vallette, B. (2012). Algebraic Operads. Grundlehren der mathematischen Wissenschaften, Vol. 346. Berlin: Springer. · Zbl 1260.18001
[13] Dotsenko, V., Khoroshkin, A. (2010). Gröbner bases for operads. Duke Math. J.153: 363-396. doi: · Zbl 1208.18007
[14] Dotsenko, V., Heijltjes, W. (2019). Gröbner bases for operads. Available at http://irma.math.unistra.fr/dotsenko/Operads.html.
[15] Dzhumadil’daev, A. S., Löfwall, C. (2002). Trees, free right-symmetric algebras, free Novikov algebras and identities. Homol. Homotopy Appl. 4: 165-190. · Zbl 1029.17001
[16] Dzhumadil’dayev, A. S. (2011). Codimension growth and non-Koszulity of Novikov operad. Comm. Algebra. 39: 2943-2952. · Zbl 1267.17001
[17] Kolesnikov, P. S., Panasenko, A. S. (2019). Novikov commutator algebras are special. Algebra Logic. 58: 538-539. doi: · Zbl 1503.17002
[18] Shirshov, A. I. (1962). Some algorithmic problem for Lie algebras. Sibirsk. Mat. Z.3: 292-296(in Russian); English translation in SIGSAM Bull. 33 (1999): 3-6. · Zbl 0104.26004
[19] Xu, X. (2000). Quadratic Conformal Superalgebras. J. Algebra. 231: 1-38. doi: · Zbl 1001.17024
[20] Xu, X. (2003). Gel’fand-Dorfman bialgebras. Southeast Asian Bull. Math. 27: 561-574. · Zbl 1160.17301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.