×

TTF theories induced by two-term tilting complexes and self-injective algebras. (English) Zbl 07787980

Summary: Let \(A\) be an Artin algebra and \(T^\bullet\) a two-term tilting complex of \(A\). We determine when \(T^\bullet\) induces a TTF theory for the module category over \(A\). Next, we assume \(A\) is self-injective. Then we show that \(T^\bullet\) induces a TTF theory for the module category over \(A\) if and only if \(T^\bullet\) is isomorphic to a tilting complex defined by some idempotent in \(A\).

MSC:

16G30 Representations of orders, lattices, algebras over commutative rings
18E30 Derived categories, triangulated categories (MSC2010)
18E40 Torsion theories, radicals
Full Text: DOI

References:

[1] Abe, H.; Hoshino, M., On derived equivalences for selfinjective algebras, Comm. Algebra, 34, 4441-4452 (2006) · Zbl 1112.16017 · doi:10.1080/00927870600938472
[2] Abe, H., Tilting modules arising from two-term tilting complexes, Comm. Algebra, 42, 988-997 (2014) · Zbl 1291.16007 · doi:10.1080/00927872.2012.720321
[3] Auslander, M., Representation theory of artin algebras I, Comm. Algebra, 1, 177-268 (1974) · Zbl 0285.16029 · doi:10.1080/00927877409412807
[4] Auslander, M.; Platzeck, MI; Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250, 1-46 (1979) · Zbl 0421.16016 · doi:10.1090/S0002-9947-1979-0530043-2
[5] Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of artin algebras, volume 36 of Cambridge studies in advanced mathematics. Cambridge University Press (1995) · Zbl 0834.16001
[6] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories, volume 188, Number 883 of Memoirs of the American Mathematical Society American Mathematical Society (2007) · Zbl 1124.18005
[7] Bongartz, K.: Tilted Algebras. In: Representations of algebras (Puebla, Mexico 1980), Lecture notes in math, vol. 903, pp. 26-38. Springer, Berlin (1981) · Zbl 0478.16025
[8] Brenner, S., Butler, M.C.R.: Generalizations of the Bernstein-Gelfand-Ponomarev Reflection Functors. In: Representation Theory II, vol. 832, pp. 103-169, Lecture Notes in Math. Springer, Berlin (1980) · Zbl 0446.16031
[9] Dickson, SE, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121, 1, 223-235 (1966) · Zbl 0138.01801 · doi:10.1090/S0002-9947-1966-0191935-0
[10] Happel, D.; Ringel, CM, Tilted algebras, Trans. Amer. Math. Soc., 274, 2, 399-443 (1982) · Zbl 0503.16024 · doi:10.1090/S0002-9947-1982-0675063-2
[11] Hartshorne, R., Residues and Duality Lecture Notes in Math, vol. 20 (1966), Berlin: Springer, Berlin · Zbl 0212.26101
[12] Hoshino, M.; Kato, Y., Tilting complexes defined by idempotents, Comm. Algebra, 30, 1, 83-100 (2002) · Zbl 1002.16004 · doi:10.1081/AGB-120006480
[13] Hoshino, M.; Kato, Y.; Miyachi, J., On t-structure and torsion theories induced by compact objects, J. Pure and App. Algebra, 167, 15-35 (2002) · Zbl 1006.18011 · doi:10.1016/S0022-4049(01)00012-3
[14] Jans, JP, Some aspects of torsion, Pac. J. Math., 15, 4, 1249-1259 (1965) · Zbl 0142.28002 · doi:10.2140/pjm.1965.15.1249
[15] Popescu, N.: Abelian categories with applications to rings and modules. Academic Press (1973) · Zbl 0271.18006
[16] Rickard, J., Morita theory for derived categories, J. London Math. Soc. (2), 39, 3, 436-456 (1989) · Zbl 0642.16034 · doi:10.1112/jlms/s2-39.3.436
[17] Verdier, J.L.: Catégories dérivées, état 0. In: Cohomologie étale, 262-311, vol. 569 of lecture notes in math. Springer, Berlin (1977) · Zbl 0407.18008
[18] Zimmermann, A.: Representation theory - a homological algebra point of view, vol. 19 of algebra and applications Springer (2014) · Zbl 1306.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.