×

Dynamics of quadratic polynomials and rational points on a curve of genus \(4\). (English) Zbl 1536.11098

Let \(K\) be a number field of degree \(D\) and let \(f : \mathbb{P}^n \rightarrow \mathbb{P}^n\) be a morphism of degree \(d \geq 2 \) and defined over \(K\). A point \(P \in \mathbb{P}^n(K)\) is said to preperiodic for \(f\) if its forward orbit \(\{f^n(P) : n \geq 0\}\) is finite. Let \(f_t(z) = z^2 + t\). For any \(z\in \mathbb{Q}\), we consider the set \(S_z = \{t \in\mathbb{Q}: z\) is preperiodic for \(f_t\}\). Flynn, Poonen, and Schaefer [E. V. Flynn et al., Duke Math. J. 90, No. 3, 435–463 (1997; Zbl 0958.11024)] proposed the following conjecture: If \(N \geq 4\), then there is no quadratic polynomial \(f(z)\in \mathbb{Q}[z]\) with a rational point of exact order \(N\).
In this paper, it is assumed that the above conjecture is true and then it is proved that the following hold:
(1)
\(\#S_z = 3\) if and only if \(z= 0\) or \(\pm 1/2\).
(2)
\(\#S_z = 5\) if and only if \[z = \pm \frac{a^3-a-1}{2a(a+1)}, \ \ \ \text{for some } \ a\in \mathbb{Q} \setminus \{-1,-1/2,0,2\}. \]
(3)
\(\#S_z = 6\) if and only if \[z = \pm \frac{2a}{a^2-1}, \ \ \ \text{for some } \ a\in \mathbb{Q} \setminus \{0,\pm 1/5,\pm 1/3,\pm 1, \pm3,\pm5\}\] or \[z = \pm \frac{a^2+1}{a^2-1}, \ \ \ \text{for some } \ a\in \mathbb{Q} \setminus \{0,\pm 1/3,\pm 1, \pm 3\}.\]
(4)
\(\#S_z = 7\) if and only if \(z = \pm 5/12, \pm 3/4\), or \(\pm 5/4\).
(5)
\(\# S_z = 4\), otherwise.

The proof of this result is reduced to the determination of the rational points on five specific algebraic curves. The rational points of the four curves can be found at the \(L\)-functions and modular forms database (http://www.lmfdb.org) The main difficulty is to find the rational points on the genus 4 curve \(C\) defined by the equation \[x^3y^2 + x^2y^3 -x^3y -xy^3 - x^2y -xy^2 + x^2 + 2xy + y^2 - x -y = 0.\] It is proved that \[C(\mathbb{Q}) = \{(0, 0), (0, 1), (0, \infty), (1, 0), (1, 1), (1, \infty), (\infty, 0), (\infty, 1), (\infty,\infty)\}.\] Two proofs are given: one that is conditional on the Birch and Swinnerton-Dyer rank conjecture for the Jacobian variety \(J\) of \(C\) and one that is unconditional and based on the determination of the size of the 2-Selmer group of \(J\). The necessary computations have been performed using Magma algebra system.

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
14G05 Rational points
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14H45 Special algebraic curves and curves of low genus
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps

Citations:

Zbl 0958.11024

Software:

Magma; LMFDB

References:

[1] Arbarello, E., Geometry of Algebraic Curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xvi+386 pp. (1985), Springer-Verlag, New York · Zbl 0559.14017 · doi:10.1007/978-1-4757-5323-3
[2] van Bommel, Raymond, Explicit arithmetic intersection theory and computation of N\'{e}ron-Tate heights, Math. Comp., 395-410 (2020) · Zbl 1426.14006 · doi:10.1090/mcom/3441
[3] Bosma, Wieb, The Magma algebra system. I. The user language, J. Symbolic Comput., 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] Bruin, Nils, Generalized explicit descent and its application to curves of genus 3, Forum Math. Sigma, Paper No. e6, 80 pp. (2016) · Zbl 1408.11065 · doi:10.1017/fms.2016.1
[5] Faber, Xander, On the number of rational iterated preimages of the origin under quadratic dynamical systems, Int. J. Number Theory, 1781-1806 (2011) · Zbl 1242.14019 · doi:10.1142/S1793042111004162
[6] Faltings, G., Endlichkeitss\"{a}tze f\"{u}r abelsche Variet\"{a}ten \"{u}ber Zahlk\"{o}rpern, Invent. Math., 349-366 (1983) · Zbl 0588.14026 · doi:10.1007/BF01388432
[7] Flynn, E. V., Cycles of quadratic polynomials and rational points on a genus-\(2\) curve, Duke Math. J., 435-463 (1997) · Zbl 0958.11024 · doi:10.1215/S0012-7094-97-09011-6
[8] Hulsbergen, Wilfred W. J., Conjectures in Arithmetic Algebraic Geometry, Aspects of Mathematics, E18, vi+236 pp. (1992), Friedr. Vieweg & Sohn, Braunschweig · Zbl 0745.14006 · doi:10.1007/978-3-322-85466-7
[9] Kolyvagin, V. A., Finiteness of \(E({\mathbf{Q}})\) and \(Ш (E,{\mathbf{Q}})\) for a subclass of Weil curves, Math. USSR-Izv.. Izv. Akad. Nauk SSSR Ser. Mat., 522-540, 670-671 (1988) · Zbl 0662.14017 · doi:10.1070/IM1989v032n03ABEH000779
[10] The {LMFDB Collaboration}, The L-functions and Modular Forms Database (2022)
[11] Morton, Patrick, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith., 89-102 (1998) · Zbl 1029.12002 · doi:10.4064/aa-87-2-89-102
[12] Morton, Patrick, Rational periodic points of rational functions, Internat. Math. Res. Notices, 97-110 (1994) · Zbl 0819.11045 · doi:10.1155/S1073792894000127
[13] Poonen, Bjorn, The classification of rational preperiodic points of quadratic polynomials over \({\mathbf{Q}} \): a refined conjecture, Math. Z., 11-29 (1998) · Zbl 0902.11025 · doi:10.1007/PL00004405
[14] Poonen, Bjorn, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2), 1109-1149 (1999) · Zbl 1024.11040 · doi:10.2307/121064
[15] Schaefer, Edward F., Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann., 447-471 (1998) · Zbl 0889.11021 · doi:10.1007/s002080050156
[16] Stoll, Michael, Independence of rational points on twists of a given curve, Compos. Math., 1201-1214 (2006) · Zbl 1128.11033 · doi:10.1112/S0010437X06002168
[17] Stoll, Michael, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math., 367-380 (2008) · Zbl 1222.11083 · doi:10.1112/S1461157000000644
[18] Stoll, Michael, Magma code verifying the computational claims in this paper (2022-03-24)
[19] Tate, John, S\'{e}minaire Bourbaki, Vol. 9. On the Conjectures of Birch and Swinnerton-Dyer and a Geometric Analog, Exp. No. 306, 415-440 (1995), Soc. Math. France, Paris · Zbl 0199.55604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.