×

Nonlocal differential equations with \({(p,q)}\) growth. (English) Zbl 1531.45012

Summary: The author considers a class of nonlocal convolution-type ordinary differential equations of the form \[ -A{({(a*(g\,\circ\, u))}(1))}u^{\prime \prime}(t)=\lambda f{(t,u(t))}, \quad 0 < t < 1, \] where \(g\) is a continuous function satisfying \((p,q)\) growth – that is, there exist constants \(c_1\), \(c_2\in (0,\infty)\) and \(c_3\in [0,\infty)\) such that \[ c_1u^p\leqslant g(u)\leqslant c_2{(c_3+u^q)}, \quad u\geqslant 0, \] where \(1\leqslant p\leqslant q {<} +\infty\). Existence of at least one positive solution to this equation when subjected to given boundary data is studied by means of topological fixed point theory.
{© 2023 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society.}

MSC:

45J05 Integro-ordinary differential equations
45P05 Integral operators
42A85 Convolution, factorization for one variable harmonic analysis
44A35 Convolution as an integral transform
26A51 Convexity of real functions in one variable, generalizations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
47G10 Integral operators
47N20 Applications of operator theory to differential and integral equations
47H10 Fixed-point theorems

References:

[1] M. I.Abbas and M. A.Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry13 (2021), 264.
[2] E.Acerbi and G.Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4)30 (2001), 311-339. · Zbl 1027.49031
[3] G. A.Afrouzi, N. T.Chung, and S.Shakeri, Existence and non‐existence results for nonlocal elliptic systems via sub‐supersolution method, Funkcial. Ekvac.59 (2016), 303-313. · Zbl 1365.35028
[4] C. O.Alves and D.‐P.Covei, Existence of solution for a class of nonlocal elliptic problem via sub‐supersolution method, Nonlinear Anal. Real World Appl.23 (2015), 1-8. · Zbl 1319.35057
[5] A.Ambrosetti and D.Arcoya, Positive solutions of elliptic Kirchhoff equations, Adv. Nonlinear Stud.17 (2017), 3-15. · Zbl 1378.35094
[6] N.Azzouz and A.Bensedik, Existence results for an elliptic equation of Kirchhoff‐type with changing sign data, Funkcial. Ekvac.55 (2012), 55-66. · Zbl 1248.35065
[7] S.Biagi, A.Calamai, and G.Infante, Nonzero positive solutions of elliptic systems with gradient dependence and functional BCs, Adv. Nonlinear Stud.20 (2020), 911-931. · Zbl 1466.35141
[8] A.Borhanifar, M. A.Ragusa, and S.Valizadeh, High‐order numerical method for two‐dimensional Riesz space fractional advection‐dispersion equation, Discrete Cont. Dyn. Syst. Series B26 (2021), 5495-5508. · Zbl 1476.65163
[9] S.Boulaaras, Existence of positive solutions for a new class of Kirchhoff parabolic systems, Rocky Mountain J. Math.50 (2020), 445-454. · Zbl 1443.35075
[10] S.Boulaaras and R.Guefaifia, Existence of positive weak solutions for a class of Kirrchoff elliptic systems with multiple parameters, Math. Meth. Appl. Sci.41 (2018), 5203-5210. · Zbl 1397.35096
[11] A.Cabada, G.Infante, and F.Tojo, Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications, Topol. Methods Nonlinear Anal.47 (2016), 265-287. · Zbl 1366.45005
[12] A.Cabada, G.Infante, and F. A. F.Tojo, Nonlinear perturbed integral equations related to nonlocal boundary value problems, Fixed Point Theory19 (2018), 65-92. · Zbl 1392.45010
[13] N. T.Chung, Existence of positive solutions for a class of Kirchhoff type systems involving critical exponents, Filomat33 (2019), 267-280. · Zbl 1499.35249
[14] F.Cianciaruso, G.Infante, and P.Pietramala, Solutions of perturbed Hammerstein integral equations with applications, Nonlinear Anal. Real World Appl.33 (2017), 317-347. · Zbl 1351.45006
[15] F. J. S. A.Corrêa, On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal.59 (2004), 1147-1155. · Zbl 1133.35043
[16] F. J. S. A.Corrêa, S. D. B.Menezes, and J.Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput.147 (2004), 475-489. · Zbl 1086.35038
[17] M.Delgado, C.Morales‐Rodrigo, J. R.Santos Júnior, and A.Suárez, Non‐local degenerate diffusion coefficients break down the components of positive solution, Adv. Nonlinear Stud.20 (2020), 19-30. · Zbl 1437.35293
[18] J. M.do Ó, S.Lorca, J.Sánchez, and P.Ubilla, Positive solutions for some nonlocal and nonvariational elliptic systems, Complex Var. Elliptic Equ.61 (2016), 297-314. · Zbl 1338.35158
[19] K.Fey and M.Foss, Morrey regularity results for asymptotically convex variational problems with \((p,q)\) growth, J. Differential Equations246 (2009), 4519-4551. · Zbl 1162.49041
[20] K.Fey and M.Foss, Morrey regularity for almost minimizers of asymptotically convex functionals with nonstandard growth, Forum Math.25 (2013), 887-929. · Zbl 1281.49035
[21] C. S.Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett.23 (2010), 1050-1055. · Zbl 1204.34007
[22] C. S.Goodrich, New Harnack inequalities and existence theorems for radially symmetric solutions of elliptic PDEs with sign changing or vanishing Green’s function, J. Differential Equations264 (2018), 236-262. · Zbl 1379.35097
[23] C. S.Goodrich, Radially symmetric solutions of elliptic PDEs with uniformly negative weight, Ann. Mat. Pura Appl. (4)197 (2018), 1585-1611. · Zbl 1412.35144
[24] C. S.Goodrich, A topological approach to nonlocal elliptic partial differential equations on an annulus, Math. Nachr.294 (2021), 286-309. · Zbl 1525.34047
[25] C. S.Goodrich, Topological analysis of doubly nonlocal boundary value problems, J. Fixed Point Theory Appl.23 (2021), no. 2, Paper No. 29, 24 p. · Zbl 1473.45016
[26] C. S.Goodrich, A topological approach to a class of one‐dimensional Kirchhoff equations, Proc. Amer. Math. Soc. Ser. B8 (2021), 158-172. · Zbl 1477.34044
[27] C. S.Goodrich, Nonlocal differential equations with concave coefficients of convolution type, Nonlinear Anal.211 (2021), 112437. · Zbl 1494.34082
[28] C. S.Goodrich, Differential equations with multiple sign changing convolution coefficients, Internat. J. Math.32 (2021), 2150057. · Zbl 1489.34037
[29] C. S.Goodrich, Nonlocal differential equations with convolution coefficients and applications to fractional calculus, Adv. Nonlinear Stud.21 (2021), 767-787. · Zbl 1504.34051
[30] C. S.Goodrich, A one‐dimensional Kirchhoff equation with generalized convolution coefficients, J. Fixed Point Theory Appl.23 (2021), no. 4, Paper No. 73, 23 p. · Zbl 1504.34052
[31] C. S.Goodrich, Discrete Kirchhoff equations with sign‐changing coefficients, J. Difference Equ. Appl.27 (2021), 664-685. · Zbl 1481.39005
[32] C. S.Goodrich, An analysis of nonlocal difference equations with finite convolution coefficients, J. Fixed Point Theory Appl.24 (2022), no. 1, Paper No. 1, 19 p. · Zbl 1486.39021
[33] C. S.Goodrich and C.Lizama, A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity, Israel J. Math.236 (2020), 533-589. · Zbl 1508.47080
[34] C. S.Goodrich and C.Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst. Series A.40 (2020), 4961-4983. · Zbl 1440.42029
[35] C. S.Goodrich and C.Lizama, Existence and monotonicity of nonlocal boundary value problems: the one‐dimensional case, Proc. Roy. Soc. Edinburgh Sect. A152 (2022), 1-27. · Zbl 1515.34031
[36] C. S.Goodrich, M. A.Ragusa, and A.Scapellato, Partial regularity of solutions to \(p(x)\)‐Laplacian PDEs with discontinuous coefficients, J. Differential Equations268 (2020), 5440-5468. · Zbl 1436.35206
[37] C. S.Goodrich and A. C.Peterson, Discrete fractional calculus, Springer International Publishing, Cham, 2015. doi: https://doi.org/10.1007/978‐3‐319‐25562‐0. · Zbl 1350.39001 · doi:10.1007/978‐3‐319‐25562‐0
[38] J.Graef, L.Kong, and H.Wang, A periodic boundary value problem with vanishing Green’s function, Appl. Math. Lett.21 (2008), 176-180. · Zbl 1135.34307
[39] J.Graef, S.Heidarkhani, and L.Kong, A variational approach to a Kirchhoff‐type problem involving two parameters, Results. Math.63 (2013), 877-889. · Zbl 1275.35108
[40] A.Granas and J.Dugundji, Fixed point theory, Springer Monographs in Mathematics, Springer, New York, 2003. · Zbl 1025.47002
[41] D.Guo and V.Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Boston, 1988. · Zbl 0661.47045
[42] G.Infante, Positive solutions of some nonlinear BVPs involving singularities and integral BCs, Discrete Contin. Dyn. Syst. Ser. S1 (2008), 99-106. · Zbl 1160.34018
[43] G.Infante, Nonzero positive solutions of nonlocal elliptic systems with functional BCs, J. Elliptic Parabol. Equ.5 (2019), 493-505. · Zbl 1433.35072
[44] G.Infante, Eigenvalues of elliptic functional differential systems via a Birkhoff‐Kellogg type theorem, Mathematics9 (2021), no. 1:4, 8 p.
[45] G.Infante and P.Pietramala, A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ.2009, Special Edition I, No. 15, 14 p. · Zbl 1201.34041
[46] G.Infante and P.Pietramala, Existence and multiplicity of non‐negative solutions for systems of perturbed Hammerstein integral equations, Nonlinear Anal.71 (2009), 1301-1310. · Zbl 1169.45001
[47] G.Infante and P.Pietramala, A third order boundary value problem subject to nonlinear boundary conditions, Math. Bohem.135 (2010), 113-121. · Zbl 1224.34036
[48] G.Infante and P.Pietramala, Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions, Math. Methods Appl. Sci.37 (2014), 2080-2090. · Zbl 1312.34060
[49] G.Infante and P.Pietramala, Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains, NoDEA Nonlinear Differential Equations Appl.22 (2015), 979-1003. · Zbl 1327.45004
[50] G.Infante, P.Pietramala, and M.Tenuta, Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory, Commun. Nonlinear Sci. Numer. Simul.19 (2014), 2245-2251. · Zbl 1457.34043
[51] T.Jankowski, Positive solutions to fractional differential equations involving Stieltjes integral conditions, Appl. Math. Comput.241 (2014), 200-213. · Zbl 1334.34058
[52] G. L.Karakostas and P. Ch.Tsamatos, Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary‐value problems, Electron. J. Differential Equations (2002), No. 30, 17 p. · Zbl 0998.45004
[53] K. Q.Lan, Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems, Appl. Math. Comput.154 (2004), 531-542. · Zbl 1055.45005
[54] K. Q.Lan, Equivalence of higher order linear Riemann‐Liouville fractional differential and integral equations, Proc. Amer. Math. Soc.148 (2020), 5225-5234. · Zbl 1455.34007
[55] K. Q.Lan, Compactness of Riemann‐Liouville fractional integral operators, Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 84, 15 p. · Zbl 1488.45060
[56] Y.Liu, W.Zhang, and X.Liu, A sufficient condition for the existence of a positive solution to a nonlinear fractional differential equation with the Riemann‐Liouville derivative, Appl. Math. Lett.25 (2012), 1986-1992. · Zbl 1254.34012
[57] C.Lizama and M.Murillo‐Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math.339 (2018), 356-366. · Zbl 1524.39010
[58] R.Ma and C.Zhong, Existence of positive solutions for integral equations with vanishing kernels, Commun. Appl. Anal.15 (2011), 529-538. · Zbl 1236.45004
[59] P.Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993), 296-333. · Zbl 0812.35042
[60] I.Podlubny, Fractional differential equations, Academic Press, New York, 1999. · Zbl 0918.34010
[61] J. R.Santos Júnior and G.Siciliano, Positive solutions for a Kirchhoff problem with a vanishing nonlocal element, J. Differential Equations265 (2018), 2034-2043. · Zbl 1394.35185
[62] R.Stańczy, Nonlocal elliptic equations, Nonlinear Anal.47 (2001), 3579-3584. · Zbl 1042.35548
[63] Y.Wang, F.Wang, and Y.An, Existence and multiplicity of positive solutions for a nonlocal differential equation, Bound. Value Probl.2011 (2011), Article No. 5, 11 p. · Zbl 1274.34070
[64] J. R. L.Webb, Initial value problems for Caputo fractional equations with singular nonlinearities, Electron. J. Differential Equations (2019), Paper No. 117, 32 p. · Zbl 1425.34029
[65] J. R. L.Webb and G.Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc. (2)74 (2006), 673-693. · Zbl 1115.34028
[66] J.Xu, Z.Wei, and W.Dong, Uniqueness of positive solutions for a class of fractional boundary value problems, Appl. Math. Lett.25 (2012), 590-593. · Zbl 1247.34011
[67] B.Yan and T.Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problems, Bound. Value Probl. (2016), Paper No. 165, 35 p. · Zbl 1369.35024
[68] B.Yan and D.Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl.442 (2016), 72-102. · Zbl 1344.35043
[69] Z.Yang, Positive solutions to a system of second‐order nonlocal boundary value problems, Nonlinear Anal.62 (2005), 1251-1265. · Zbl 1089.34022
[70] Z.Yang, Positive solutions of a second‐order integral boundary value problem, J. Math. Anal. Appl.321 (2006), 751-765. · Zbl 1106.34014
[71] E.Zeidler, Nonlinear functional analysis and its applications, I: fixed‐point theorems, Springer, New York, 1986. · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.