×

Sato-Tate distributions of Catalan curves. (English) Zbl 1540.11126

Summary: For distinct odd primes \(p\) and \(q\), we define the Catalan curve \(C_{p, q}\) by the affine equation \(y^q = x^p-1\). In this article we construct the Sato-Tate groups of the Jacobians in order to study the limiting distributions of coefficients of their normalized \(L\)-polynomials. Catalan Jacobians are nondegenerate and simple with noncyclic Galois groups (of the endomorphism fields over \(\mathbb{Q}\)), thus making them interesting varieties to study in the context of Sato-Tate groups. We compute both statistical and numerical moments for the limiting distributions. Lastly, we determine the Galois endomorphism types of the Jacobians using both old and new techniques.

MSC:

11M50 Relations with random matrices
11G10 Abelian varieties of dimension \(> 1\)
11G20 Curves over finite and local fields
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)

Software:

CoCalc

References:

[1] Aoki, Noboru, Hodge cycles on CM abelian varieties of Fermat type, Comment. Math. Univ. St. Pauli, 51, 1, 99-130 (2002) · Zbl 1027.14003
[2] Aoki, Noboru, The Hodge conjecture for the Jacobian varieties of generalized Catalan curves, Tokyo J. Math., 27, 2, 313-335 (2004) · Zbl 1073.14015 · doi:10.3836/tjm/1244208392
[3] Arora, Sonny; Cantoral-Farfán, Victoria; Landesman, Aaron; Lombardo, Davide; Morrow, Jackson S., The twisting Sato-Tate group of the curve \(y^2 = x^8-14x^4+1\), Math. Z., 290, 3-4, 991-1022 (2018) · Zbl 1408.14101 · doi:10.1007/s00209-018-2049-6
[4] Banaszak, Grzegorz; Gajda, Wojciech; Krasoń, Piotr, On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory, 100, 1, 117-132 (2003) · Zbl 1056.11034 · doi:10.1016/S0022-314X(02)00121-X
[5] Banaszak, Grzegorz; Kedlaya, Kiran S., An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. Math. J., 64, 1, 245-274 (2015) · Zbl 1392.11041 · doi:10.1512/iumj.2015.64.5438
[6] Barnet-Lamb, Tom; Geraghty, David; Harris, Michael; Taylor, Richard, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., 47, 1, 29-98 (2011) · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[7] Birkenhake, Christina; Lange, Herbert, Complex abelian varieties, 302, viii+435 p. pp. (1992), Springer · Zbl 0779.14012 · doi:10.1007/978-3-662-02788-2
[8] Clozel, Laurent; Harris, Michael; Taylor, Richard, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations, Publ. Math., Inst. Hautes Étud. Sci., 108, 1-181 (2008) · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1
[9] Costa, Edgar; Fité, Francesc; Sutherland, Andrew V., Arithmetic invariants from Sato-Tate moments, C. R. Math. Acad. Sci. Paris, 357, 11-12, 823-826 (2019) · Zbl 1444.11127 · doi:10.1016/j.crma.2019.11.008
[10] Emory, Melissa; Goodson, Heidi, Sato-Tate distributions of \(y^2=x^p - 1\) and \(y^2=x^{2p}-1\), J. Algebra, 597, 241-265 (2022) · Zbl 1536.11139 · doi:10.1016/j.jalgebra.2022.01.002
[11] Fité, Francesc; González, Josep; Lario, Joan-Carles, Frobenius distribution for quotients of Fermat curves of prime exponent, Can. J. Math., 68, 2, 361-394 (2016) · Zbl 1400.11086 · doi:10.4153/cjm-2015-028-x
[12] Fité, Francesc; Kedlaya, Kiran S.; Rotger, Víctor; Sutherland, Andrew V., Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., 148, 5, 1390-1442 (2012) · Zbl 1269.11094 · doi:10.1112/S0010437X12000279
[13] Fité, Francesc; Kedlaya, Kiran S.; Sutherland, Andrew V., Sato-Tate groups of abelian threefolds (2021)
[14] Fité, Francesc; Kedlaya, Kiran S.; Sutherland, Andrew V., Arithmetic, geometry, cryptography and coding theory, 770, Sato-Tate groups of abelian threefolds: a preview of the classification, 103-129 (2021), American Mathematical Society · Zbl 1497.11158 · doi:10.1090/conm/770/15432
[15] Fité, Francesc; Lorenzo García, Elisa; Sutherland, Andrew V., Sato-Tate distributions of twists of the Fermat and the Klein quartics, Res. Math. Sci., 5, 4, 40 p. pp. (2018) · Zbl 1451.11050 · doi:10.1007/s40687-018-0162-0
[16] Fité, Francesc; Sutherland, Andrew V., Sato-Tate distributions of twists of \(y^2=x^5-x\) and \(y^2=x^6+1\), Algebra Number Theory, 8, 3, 543-585 (2014) · Zbl 1303.14051 · doi:10.2140/ant.2014.8.543
[17] Fité, Francesc; Sutherland, Andrew V., Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, 663, Sato-Tate groups of \(y^2=x^8+c\) and \(y^2=x^7-cx, 103-126 (2016)\), American Mathematical Society · Zbl 1411.11090 · doi:10.1090/conm/663/13351
[18] Harris, Michael; Shepherd-Barron, Nick; Taylor, Richard, A family of Calabi-Yau varieties and potential automorphy, Ann. Math., 171, 2, 779-813 (2010) · Zbl 1263.11061 · doi:10.4007/annals.2010.171.779
[19] Harvey, David; Sutherland, Andrew V., Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, LMS J. Comput. Math., 17, 257-273 (2014) · Zbl 1296.11076 · doi:10.1112/S1461157014000187
[20] Harvey, David; Sutherland, Andrew V., Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, 663, Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time, II, 127-147 (2016), American Mathematical Society · Zbl 1417.11121 · doi:10.1090/conm/663/13352
[21] Hazama, Fumio, Algebraic cycles on nonsimple abelian varieties, Duke Math. J., 58, 1, 31-37 (1989) · Zbl 0697.14028 · doi:10.1215/S0012-7094-89-05803-1
[22] Hazama, Fumio, Hodge cycles on the Jacobian variety of the Catalan curve, Compos. Math., 107, 3, 339-353 (1997) · Zbl 1044.11587 · doi:10.1023/A:1000106427229
[23] Johansson, Christian, On the Sato-Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc., 369, 9, 6303-6325 (2017) · Zbl 1428.11100 · doi:10.1090/tran/6847
[24] Lario, Joan-Carles; Somoza, Anna, Number theory related to modular curves—Momose memorial volume, 701, The Sato-Tate conjecture for a Picard curve with complex multiplication (with an appendix by Francesc Fité), 151-165 (2018), American Mathematical Society · Zbl 1440.11100 · doi:10.1090/conm/701/14151
[25] Mihăilescu, Preda, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., 572, 167-195 (2004) · Zbl 1067.11017 · doi:10.1515/crll.2004.048
[26] Murty, V. Kumar, Exceptional Hodge classes on certain abelian varieties, Math. Ann., 268, 2, 197-206 (1984) · Zbl 0521.14004 · doi:10.1007/BF01456085
[27] Pohlmann, Henry, Algebraic cycles on abelian varieties of complex multiplication type, Ann. Math., 88, 161-180 (1968) · Zbl 0201.23201 · doi:10.2307/1970570
[28] SageMath, Inc., CoCalc Collaborative Computation Online (2020)
[29] Serre, Jean-Pierre, Linear representations of finite groups, 42, 170 p. pp. (1977), Springer · Zbl 0355.20006 · doi:10.1007/978-1-4684-9458-7
[30] Serre, Jean-Pierre, Lectures on \({N}_X (p), 11\), x+163 p. pp. (2012), CRC Press · Zbl 1238.11001
[31] Shioda, Tetsuji, Algebraic cycles on abelian varieties of Fermat type, Math. Ann., 258, 1, 65-80 (1981) · Zbl 0515.14005 · doi:10.1007/BF01450347
[32] Sutherland, Andrew V., Analytic methods in arithmetic geometry, 740, Sato-Tate distributions, 197-248 (2019), American Mathematical Society · Zbl 1440.11176 · doi:10.1090/conm/740/14904
[33] Taylor, Richard, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. II, Publ. Math., Inst. Hautes Étud. Sci., 108, 183-239 (2008) · Zbl 1169.11021 · doi:10.1007/s10240-008-0015-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.