×

Study on the Biswas-Arshed equation with the beta time derivative. (English) Zbl 1492.35406


MSC:

35R11 Fractional partial differential equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35C05 Solutions to PDEs in closed form
Full Text: DOI

References:

[1] Hashemi, MS; Inc, M.; Yusuf, A., On three-dimensional variable order time fractional chaotic system with nonsingular kernel, Chaos Solitons Fractals, 133 (2020) · Zbl 1483.65117 · doi:10.1016/j.chaos.2020.109628
[2] Hashemi, MS; Akgül, A., Solitary wave solutions of time-space nonlinear fractional Schrödinger’s equation: two analytical approaches, J. Comput. Appl. Math., 339, 147-160 (2018) · Zbl 1392.35286 · doi:10.1016/j.cam.2017.11.013
[3] Darvishi, MT; Najafi, M.; Wazwaz, AM, Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions, Chaos Solitons Fractals, 150 (2021) · Zbl 1498.35568 · doi:10.1016/j.chaos.2021.111187
[4] Sadri, K., Hosseini, K., Baleanu, D., Ahmadian, A., Salahshour, S.: Bivariate Chebyshev polynomials of the fifth kind for variable-order time-fractional partial integro-differential equations with weakly singular kernel. Adv. Difference Equations 348 (2021). · Zbl 1494.65104
[5] Hosseini, K.; Ilie, M.; Mirzazadeh, M.; Yusuf, A.; Sulaiman, TA; Baleanu, D.; Salahshour, S., An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simul., 187, 248-260 (2021) · Zbl 1540.76171 · doi:10.1016/j.matcom.2021.02.021
[6] Kaplan, M.; Akbulut, A., The analysis of the soliton type solutions of conformable equations by using generalized Kudryashov method, Opt. Quant. Electron., 53, 498 (2021) · doi:10.1007/s11082-021-03144-y
[7] Islam, SMR; Bashar, MH; Mohammad, N., Immeasurable soliton solutions and enhanced (G’/G)-expansion method, Physics Open, 9 (2021) · doi:10.1016/j.physo.2021.100086
[8] Bashar, MH; Islam, SMR; Kumar, D., Construction of traveling wave solutions of the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation, Partial Differ. Equ. Appl. Math., 4 (2021) · doi:10.1016/j.padiff.2021.100040
[9] Yu, W.; Zhou, Q.; Mirzazadeh, M.; Liu, W.; Biswas, A., Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics, J. Adv. Res., 15, 69-76 (2019) · doi:10.1016/j.jare.2018.09.001
[10] Liu, W.; Zhang, Y.; Triki, H.; Mirzazadeh, M.; Ekici, M.; Zhou, Q.; Biswas, A.; Belic, M., Interaction properties of solitonics in inhomogeneous optical fibers, Nonlinear Dyn., 95, 557-563 (2019) · doi:10.1007/s11071-018-4582-6
[11] Hosseini, K.; Matinfar, M.; Mirzazadeh, M., Soliton solutions of high-order nonlinear Schrödinger equations with different laws of nonlinearities, Regul. Chaotic Dyn., 26, 1, 105-112 (2021) · Zbl 1473.35506 · doi:10.1134/S1560354721010068
[12] Podlubny, I., Fractional differential equations (1999), USA: Academic Press, USA · Zbl 0924.34008
[13] Atangana, A., Noutchie, S.C.O.: Model of Break-Bone Fever via Beta-Derivatives. BioMed Res. Int. 523159 (2014).
[14] Hussain, A.; Jhangeer, A.; Tahir, S.; Chu, YM; Khan, I.; Nisar, KS, Dynamical behavior of fractional Chen-Lee-Liu equation in optical fibers with beta derivatives, Results Phys., 18 (2020) · doi:10.1016/j.rinp.2020.103208
[15] Yıldırım, Y., Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182, 810-820 (2019) · doi:10.1016/j.ijleo.2019.01.085
[16] Yıldırım, Y., Optical solitons of Biswas-Arshed equation by modified simple equation technique, Optik, 182, 986-994 (2019) · doi:10.1016/j.ijleo.2019.01.106
[17] Aliyu, AI; Inc, M.; Yusuf, A.; Baleanu, D.; Bayram, M., Dark-bright optical soliton and conserved vectors to the Biswas-Arshed equation with third-order dispersions in the absence of self-phase modulation, Front. Phys., 7, 28 (2019) · doi:10.3389/fphy.2019.00028
[18] Tahir, M.; Awan, AU; Rehman, HU, Dark and singular optical solitons to the Biswas-Arshed model with Kerr and power law nonlinearity, Optik, 185, 777-783 (2019) · doi:10.1016/j.ijleo.2019.03.108
[19] Özkan, YS, On the exact solutions to Biswas-Arshed equation involving truncated M-fractional space-time derivative terms, Optik Int. J. Light Elect. Opt., 227 (2021) · doi:10.1016/j.ijleo.2020.166109
[20] Zafar, A.; Bekir, A.; Raheel, M.; Razzaq, W., Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik Int. J. Light Elect. Opt., 222 (2020) · doi:10.1016/j.ijleo.2020.165355
[21] Hosseini, K.; Mirzazadeh, M.; Ilie, M.; Gómez-Aguilar, JF, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik Int. J. Light Elect. Opt., 217 (2020) · doi:10.1016/j.ijleo.2020.164801
[22] Demiray, ST, New solutions of Biswas-Arshed equation with beta time derivative, Optik Int. J. Light Elect. Opt., 222 (2020) · doi:10.1016/j.ijleo.2020.165405
[23] Hoque, F.; Roshid, H., Optical soliton solutions of the Biswas-Arshed model by the tan θ/2 expansion approach, Phys. Scr., 95 (2020) · doi:10.1088/1402-4896/ab97ce
[24] Tripathy, A., Sahoo, S., Saha Ray, S., Abdou, M. A.: New optical soliton solutions of Biswas-Arshed model with Kerr law nonlinearity. Int. J. Modern Phys. B 35(26), 2150263 (2021). · Zbl 1490.81132
[25] Sabi’u, J., Rezazadeh, H., Tariq, H., Bekir, A.: Optical solitons for the two forms of Biswas-Arshed equation. Modern Phys. Lett. B 33(25) 1950308 (2019).
[26] Kudryashov, NA, Periodic and solitary waves of the Biswas-Arshed equation, Optik Int. J. Light Elect. Opt., 200 (2020) · doi:10.1016/j.ijleo.2019.163442
[27] Aouadi, S.; Bouzida, A.; Daoui, AK; Triki, H.; Zhou, Q.; Liu, S., W-shaped, bright and dark solitons of Biswas-Arshed equation, Optik Int. J. Light Elect. Opt., 182, 227-232 (2019) · doi:10.1016/j.ijleo.2019.01.027
[28] Rehman, HU; Saleem, MS; Zubair, M.; Jafar, S., Optical solitons with Biswas-Arshed model using mapping method, Optik Int. J. Light Elect. Opt., 194 (2019) · doi:10.1016/j.ijleo.2019.163091
[29] Akram, G.; Sarfraz, M., Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method, Optik Int. J. Light Elect. Opt., 242 (2021) · doi:10.1016/j.ijleo.2021.167258
[30] Seadawy, AR; Cheemaa, N.; Althobaiti, S.; Sayed, S.; Biswas, A., Optical soliton perturbation with fractional temporal evolution by extended modified auxiliary equation mapping, Rev. Mex. Fis., 67, 3, 403-414 (2021)
[31] Manafian, J.; İlhan, OA; Avazpour, L., The extended auxiliary equation mapping method to determine novel exact solitary wave solutions of the nonlinear fractional PDEs, Int. J. Nonlinear Sci. Numer. Simulation, 22, 1, 69-82 (2021) · Zbl 1525.35233 · doi:10.1515/ijnsns-2019-0279
[32] Akbar, MA; Ali, NHM, The improved F-expansion method with Riccati equation and its applications in mathematical physics, Cogent Math., 4, 1282577 (2017) · Zbl 1438.35344 · doi:10.1080/23311835.2017.1282577
[33] Islam, MS; Khan, K.; Akbar, MA; Mastroberardino, A., F-expansion method combined with Riccati equation applied to nonlinear evolution equations, Roy. Soc. Open Sci., 1 (2014) · doi:10.1098/rsos.140038
[34] Islam, MS; Akbar, MA; Khan, K., Analytical solutions of nonlinear Klein-Gordon equation using the improved F-expansion method, Opt. Quant. Electron., 50, 224 (2018) · doi:10.1007/s11082-018-1445-9
[35] Islam, MS; Akbar, MA; Khan, K., The improved F-expansion method and its application to the MEE circular rod equation and the ZKBBM equation, Cogent Math., 4, 1378530 (2017) · Zbl 1438.35356 · doi:10.1080/23311835.2017.1378530
[36] Mirzazadeh, M., Akbulut, A., Taşcan, F., Akinyemi, L.: A novel integration approach to study the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index. Optik Int. J. Light Elect. Opt. 252, 168529 (2022).
[37] Seadawy, AR; Cheemaa, N., Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrodinger equation in nonlinear optics, Mod. Phys. Lett. B, 18, 1950203 (2019) · doi:10.1142/S0217984919502038
[38] Seadawy, AR; Ali, A.; Raddadi, MH, Exact and solitary wave solutions of conformable time fractional Clannish Random Walker’s Parabolic and Ablowitz-Kaup-Newell-Segur equations via modified mathematical methods, Results Phys., 26 (2021) · doi:10.1016/j.rinp.2021.104374
[39] Akbar, M.A., Norhashidah, M. A.: The improved F-expansion method with Riccati equation and its applications in mathematical physics. Cogent Math., 2331-1835 (2017). · Zbl 1438.35344
[40] Islam, S.; Khan, K.; Akbar, MA, Application of the improved F -expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations, J. Egyptian Math. Soc., 25, 13-18 (2017) · Zbl 1357.35072 · doi:10.1016/j.joems.2016.03.008
[41] Bashar, MH; Islam, SMR, Exact solutions to the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods, Phys. Open, 5 (2020) · doi:10.1016/j.physo.2020.100027
[42] Akbulut, A.; Hashemi, MS; Rezazadeh, H., New conservation laws and exact solutions of coupled Burgers’ equation, Waves Random Complex Media (2021) · doi:10.1080/17455030.2021.1979691
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.