×

Modeling and numerical simulation of non-linear FSI systems for energy harvesting based on ocean waves and beams with piezoelectric patches. (English) Zbl 1504.35289

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
76D05 Navier-Stokes equations for incompressible viscous fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F15 Electromagnetic effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74P15 Topological methods for optimization problems in solid mechanics
78A55 Technical applications of optics and electromagnetic theory
86A05 Hydrology, hydrography, oceanography
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Shu, YC; Lien, IC, Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. and Struct., 15, 6, 1499-1512 (2006) · doi:10.1088/0964-1726/15/6/001
[2] Beeby, SP; Tudor, MJ; White, NM, Energy harvesting vibration sources for microsystems applications, Meas. Sci. and Technol., 17, 12, R175-R195 (2006) · doi:10.1088/0957-0233/17/12/R01
[3] Erturk, A.; Inman, DJ, A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters, J. of Vibration and Acoustics, 130, 4, 41002 (2008) · doi:10.1115/1.2890402
[4] Tanaka, Y.; Oko, T.; Mutsuda, H.; Popov, AA; Patel, R.; McWilliam, S., Forced vibration experiments on flexible piezoelectric devices operating in air and water environments, Int. J. of Appl. Electromagnetics and Mech., 45, 1-4, 573-580 (2014) · doi:10.3233/JAE-141879
[5] Mutsuda, H., Watanabe, R., Hirata, M., Doi, Y., Tanaka, Y.: Elastic Floating Unit With Piezoelectric Device for Harvesting Ocean Wave Energy. In: Volume 7: Ocean Space Utilization; Ocean Renewable Energy, ASME pp. 233 (2012)
[6] Williams, CB; Yates, RB, Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Phys., 52, 8-11 (1996) · doi:10.1016/0924-4247(96)80118-X
[7] Priya, S., Advances in energy harvesting using low profile piezoelectric transducers, J. of Electroceramics, 19, 167-184 (2007) · doi:10.1007/s10832-007-9043-4
[8] Arnold, DP, Review of Microscale Magnetic Power Generation, IEEE Trans. on Magnetics, 43, 3940-3951 (2007) · doi:10.1109/TMAG.2007.906150
[9] Mitcheson, PD; Miao, P.; Stark, BH; Yeatman, EM; Holmes, AS; Green, TC, MEMS electrostatic micropower generator for low frequency operation, Sensors and Actuators A: Phys., 115, 523-529 (2004) · doi:10.1016/j.sna.2004.04.026
[10] Anton, SR; Sodano, HA, A review of power harvesting using piezoelectric materials (2003-2006), Smart Materials and Struct., 16, 3, R1-R21 (2007) · doi:10.1088/0964-1726/16/3/R01
[11] Dietl, JM; Wickenheiser, AM; Garcia, E., A Timoshenko beam model for cantilevered piezoelectric energy harvesters, Smart Materials and Struct., 19, 5, 55018 (2010) · doi:10.1088/0964-1726/19/5/055018
[12] Ajitsaria, J.; Choe, SY; Shen, D.; Kim, DJ, Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation, Smart Materials and Struct., 16, 2, 447-454 (2007) · doi:10.1088/0964-1726/16/2/024
[13] Beeby, SP; Torah, RN; Tudor, MJ; Glynne-Jones, P.; O’Donnell, T.; Saha, CR; Roy, S., A micro electromagnetic generator for vibration energy harvesting, J. of Micromech. and Microeng., 17, 7, 1257-1265 (2007) · doi:10.1088/0960-1317/17/7/007
[14] Erturk, A.; Hoffmann, J.; Inman, DJ, A piezomagnetoelastic structure for broadband vibration energy harvesting, Appl. Phys. Letters, 94, 25 (2009) · doi:10.1063/1.3159815
[15] Wu, N.; Wang, Q.; Xie, X., Wind energy harvesting with a piezoelectric harvester, Smart Materials and Structures, 22, 95023 (2013) · doi:10.1088/0964-1726/22/9/095023
[16] Xie, XD; Wang, Q.; Wu, N., A ring piezoelectric energy harvester excited by magnetic forces, Int. J. of Eng. Sci., 77, 71-78 (2014) · doi:10.1016/j.ijengsci.2014.01.001
[17] Wang, Q.; Wu, N., Optimal design of a piezoelectric coupled beam for power harvesting, Smart Materials and Struct., 21, 8, 85013 (2012) · doi:10.1088/0964-1726/21/8/085013
[18] Sarfraz, S., Shahid, M.H., Akhtar, I.: Energy harvesting potentials of flow-induced vibrations for trapezoid and square bodies: Numerical simulations and analyses. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 725-731 IEEE (2019)
[19] Ansari, M.; Karami, MA, Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers, J. of Appl. Phys., 119, 9 (2016) · doi:10.1063/1.4942882
[20] Hwang, WS; Ahn, JH; Jeong, SY; Jung, HJ; Hong, SK; Choi, JY; Cho, JY; Kim, JH; Sung, TH, Design of piezoelectric ocean-wave energy harvester using sway movement, Sensors and Actuators A: Phys., 260, 191-197 (2017) · doi:10.1016/j.sna.2017.04.026
[21] Muthalif, AG; Nordin, ND, Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results, Mech. Syst. and Signal Process., 54, 417-426 (2015) · doi:10.1016/j.ymssp.2014.07.014
[22] Khalatkar, A.; Gupta, V., Piezoelectric energy harvester for low engine vibrations, J. of Renewable and Sustainable Energy, 9, 2 (2017) · doi:10.1063/1.4979501
[23] Belkourchia, Y., Bakhti, H., Azrar, L.: Numerical simulation of fsi model for energy harvesting from ocean waves and beams with piezoelectric material. In: 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-5 IEEE (2018)
[24] Murray, R., Rastegar, J.: Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys. pp. 72880E (mar 2009)
[25] Priya, S., Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Letters, 87 (2005) · doi:10.1063/1.2119410
[26] Zurkinden, A., Campanile, F., Martinelli, L.: Wave energy converter through piezoelectric polymers. In: Proceedings of the COMSOL Users Conference (Grenoble) (2007)
[27] Gao, X.; Shih, W-H; Shih, WY, Flow Energy Harvesting Using Piezoelectric Cantilevers With Cylindrical Extension, IEEE Trans. on Industrial Electronics, 60, 1116-1118 (2013) · doi:10.1109/TIE.2012.2187413
[28] Burns, J.R.: Ocean wave energy conversion using piezoelectric material members. Aug. 11 (1987). US Patent 4,685,296
[29] Taylor, GW; Burns, JR; Kammann, SA; Powers, WB; Welsh, TR, The Energy Harvesting Eel: A small subsurface ocean/river power generator, IEEE J. of Oceanic Eng., 26, 4, 539-547 (2001) · doi:10.1109/48.972090
[30] Viet, N.; Xie, X.; Liew, K.; Banthia, N.; Wang, Q., Energy harvesting from ocean waves by a floating energy harvester, Energy, 112, 1219-1226 (2016) · doi:10.1016/j.energy.2016.07.019
[31] Xie, X.; Wang, Q., A study on a high efficient cylinder composite piezoelectric energy harvester, Composite Struct., 161, 237-245 (2017) · doi:10.1016/j.compstruct.2016.11.032
[32] Xie, X.; Wang, Q., A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires, Int. J. of Eng. Sci., 94, 113-127 (2015) · doi:10.1016/j.ijengsci.2015.05.004
[33] Xie, X.; Wang, Q., A study on an ocean wave energy harvester made of a composite piezoelectric buoy structure, Composite Struct., 178, 447-454 (2017) · doi:10.1016/j.compstruct.2017.06.066
[34] Zhao, L.; Yang, Y., An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting, Appl. energy, 212, 233-243 (2018) · doi:10.1016/j.apenergy.2017.12.042
[35] Viet, N.; Wang, Q., Ocean wave energy pitching harvester with a frequency tuning capability, Energy, 162, 603-617 (2018) · doi:10.1016/j.energy.2018.08.067
[36] Xie, XD; Wang, Q.; Wu, N., Energy harvesting from transverse ocean waves by a piezoelectric plate, Int. J. of Eng. Sci., 81, 41-48 (2014) · doi:10.1016/j.ijengsci.2014.04.003
[37] Xie, XD; Wang, Q.; Wu, N., Potential of a piezoelectric energy harvester from sea waves, J. of Sound and Vibration, 333, 5, 1421-1429 (2014) · doi:10.1016/j.jsv.2013.11.008
[38] Wu, N.; Wang, Q.; Xie, X., Ocean wave energy harvesting with a piezoelectric coupled buoy structure, Appl. Ocean Res., 50, 110-118 (2015) · doi:10.1016/j.apor.2015.01.004
[39] Viet, N.; Wang, Q.; Carpinteri, A., Development of an ocean wave energy harvester with a built-in frequency conversion function, Int. J. of Energy Res., 42, 2, 684-695 (2018) · doi:10.1002/er.3851
[40] Xie, J.; Zuo, L., Dynamics and control of ocean wave energy converters, Int. J. of Dynamics and Control, 1, 3, 262-276 (2013) · doi:10.1007/s40435-013-0025-x
[41] Khatri, P.; Wang, X., Comprehensive review of a linear electrical generator for ocean wave energy conversion, IET Renewable Power Generation, 14, 6, 949-958 (2020) · doi:10.1049/iet-rpg.2019.0624
[42] Azrar, L.; Benamar, R.; White, R., Semi-analytical approach to the non-linear dynamic response problem of s-s and c-c beams at large vibration amplitudes part i: general theory and application to the single mode approach to free and forced vibration analysis, J. of Sound and Vibration, 224, 2, 183-207 (1999) · doi:10.1006/jsvi.1998.1893
[43] Azrar, L.; Benamar, R.; White, R., A semi-analytical approach to the non-linear dynamic response problem of beams at large vibration amplitudes, part ii: Multimode approach to the steady state forced periodic response, J. of Sound and Vibration, 255, 1, 1-41 (2002) · doi:10.1006/jsvi.2000.3595
[44] Bakhti, H.; Azrar, L.; Baleanu, D., Pulsatile blood flow in constricted tapered artery using a variable-order fractional oldroyd-b model, Thermal Sci., 21, 1, 29-40 (2017) · doi:10.2298/TSCI160421237B
[45] Belkourchia, Y., Bakhti, H., Azrar, L.: Optimization approach for piezoelectric energy harvesting from ocean waves and beams. In: 2019 5th International Conference on Optimization and Applications (ICOA), pp. 1-5, IEEE (2019)
[46] Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford University Press, USA; (2015)
[47] Lee, C-K; Moon, FC, Modal sensors/actuators, J. of appl. mech., 57, 2, 434-441 (1990) · doi:10.1115/1.2892008
[48] Bert, CW; Malik, M., Differential Quadrature Method in Computational Mechanics: A Review, Appl. Mech. Reviews, 49, 1 (1996) · doi:10.1115/1.3101882
[49] Chesshire, G.; Henshaw, WD, Composite overlapping meshes for the solution of partial differential equations, J. of Comput. Phys., 90, 1, 1-64 (1990) · Zbl 0709.65090 · doi:10.1016/0021-9991(90)90196-8
[50] Roache, Patrick J. Verification and validation in computational science and engineering, Hermosa Publishers, Vol. 895, Albuquerque, New Mexico USA (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.