×

Trigonometric cosine, square, sawtooth and triangular waveforms of internal heating modulations for three-component convection in a couple stress liquid: a detailed analysis. (English) Zbl 1504.76073

MSC:

76R10 Free convection
76A05 Non-Newtonian fluids
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Pearlstein, AJ; Harris, RM; Terrones, G., The onset of convective instability in a triply diffusive fluid layer, J. Fluid Mech., 202, 443-465 (1989) · Zbl 0666.76066 · doi:10.1017/S0022112089001242
[2] Griffiths, RW, The influence of a third diffusing component upon the onset of convection, J. Fluid Mech., 4, 659-670 (1979) · Zbl 0445.76036 · doi:10.1017/S0022112079000811
[3] Poulikakos, D., The effect of a third diffusing component on the onset of convection in a horizontal porous layer, Phys. Fluids., 10, 3172 (1985) · Zbl 0573.76045 · doi:10.1063/1.865359
[4] Sameena, T.; Pranesh, S., Triple diffusive convection in Oldroyd-B liquid, IOSR., 4, 7-13 (2016) · doi:10.9790/0990-0405010718
[5] Raghunatha, KR; Shivakumara, IS, Stability of triple diffusive convection in a viscoelastic fluid-saturated porous layer, Appl. Math. Mech., 10, 1385-1410 (2018) · Zbl 1402.76129 · doi:10.1007/s10483-018-2376-8
[6] Sameena, T.; Pranesh, S., Heat and mass transfer of triple diffusive convection in a rotating liquid using Ginzburg-Landau model, Int. J. Mech. Mechatron. Eng., 3, 545-550 (2017)
[7] Raghunatha, KR; Shivakumara, IS; Shankar, BM, Weakly nonlinear stability analysis of triple diffusive convection in a Maxwell fluid saturated porous layer, Appl. Math. Mech., 2, 153-168 (2017) · Zbl 1382.76014
[8] Awasthi, MK; Kumar, V.; Patel, RK, Onset of triply diffusive convection in a Maxwell fluid saturated porous layer with internal heat source, Ain Shams Eng. J., 4, 1591-1600 (2018) · doi:10.1016/j.asej.2016.11.012
[9] Gayathri, M.; Pranesh, S.; Sameena, T., Effects of magnetic field and internal heat generation on triple diffusive convection in an Oldroyd-B liquid, Int. J. Res. Advent Technol., 6, 154-163 (2019)
[10] Pranesh, S.; Siddheshwar, PG; Zhao, Y.; Ansa, M., Linear and nonlinear triple diffusive convection in the presence of sinusoidal/non-sinusoidal gravity modulation: A comparative study, Mech. Res. Commun., 113, 103694 (2021) · doi:10.1016/j.mechrescom.2021.103694
[11] Pranesh, S.; Siddheshwar, PG; Sameena, T.; Yekasi, V., Convection in a horizontal layer of water with three diffusing components, SN Appl. Sci. (2020) · doi:10.1007/s42452-020-2478-9
[12] Shivakumara, IS; Naveen Kumar, SB, Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer, Int. J. Heat Mass Transf., 68, 542-553 (2014) · doi:10.1016/j.ijheatmasstransfer.2013.09.051
[13] Bush, MB, Viscous Flow Applications, 134-160 (1989), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0696.76003 · doi:10.1007/978-3-642-83683-1_7
[14] Stokes, VK, Couple stresses in fluids, Phys. Fluids, 9, 1709-1715 (1966) · doi:10.1063/1.1761925
[15] Mohd Rusdi, ND; Mohd Mokhtar, NF; Senu, N.; Mohamed Isa, SSP, Stability convection in a fluid saturated in an anisotropic porous medium with internal heating effect, J. Adv. Res. Fluid Mech. Therm. Sci., 2, 75-84 (2020) · doi:10.37934/arfmts.76.2.7584
[16] Maiti, S.; Misra, JC, Peristaltic transport of a couple stress fluid: some applications to hemodynamics, J. Mech. Med. Biol., 3, 1250048 (2012) · doi:10.1142/S0219519411004733
[17] Chaturani, P., Viscosity of Poiseuille flow of a couple stress fluid with applications to blood flow, Biorheology, 2, 119-128 (1978) · doi:10.3233/BIR-1978-15206
[18] Kumar, P., Thermosolutal magneto: rotatory convection in couple: stress fluid through porous medium, J. Appl. Fluid Mech., 5, 45 (2012)
[19] Layek, GC; Pati, N., Chaotic thermal convection of couple-stress fluid layer, Nonlinear Dyn., 2, 837-852 (2017) · Zbl 1390.37141
[20] Keshri, OP; Kumar, A.; Gupta, VK, Effect of internal heat source on magneto-stationary convection of couple stress fluid under magnetic field modulation, Chin. J. Phys., 57, 105-115 (2019) · Zbl 1539.80013 · doi:10.1016/j.cjph.2018.12.006
[21] Nandal, R.; Mahajan, A., Penetrative convection in couple-stress fluid via internal heat source/sink with the boundary effects, J. Non-Newtonian Fluid Mech., 260, 133-141 (2018) · doi:10.1016/j.jnnfm.2018.07.004
[22] Valanis, KC; Sun, TC, Poiseuille flow of a couple stress fluid with applications to blood flow, Biorheology, 2, 85-97 (1969) · doi:10.3233/BIR-1969-6203
[23] Straughan, B.; Tracey, J., Multi-component convection-diffusion with internal heating or cooling, Acta Mech., 1, 219-238 (1999) · Zbl 0922.76170 · doi:10.1007/BF01179019
[24] Tasaka, Y.; Takeda, Y., Effects of heat source distribution on natural convection induced by internal heating, Int. J. Heat Mass Transf., 6, 1164-1174 (2005) · Zbl 1189.76564 · doi:10.1016/j.ijheatmasstransfer.2004.09.044
[25] Tritton, DJ; Zarraga, MN, Convection in horizontal layers with internal heat generation, Exp. J. Fluid Mech., 1, 21-31 (1967) · doi:10.1017/S0022112067001272
[26] Miquel, B.; Lepot, S.; Bouillaut, V.; Gallet, B., Convection driven by internal heat sources and sinks: heat transport beyond the mixing-length or “ultimate” scaling regime, Phys. Rev. Fluids. (2019) · doi:10.1103/PhysRevFluids.4.121501
[27] Nandal, R.; Mahajan, A., Linear and nonlinear stability analysis of a fluid-saturated Darcy-Brinkman porous media via internal heat source/sink with the effect of boundary heating/cooling, J. Porous Media., 5, 545-562 (2019) · doi:10.1615/JPorMedia.2019028958
[28] Ramachandramurthy, V.; Aruna, AS; Kavitha, N., Bénard-Taylor convection in temperature-dependent variable viscosity newtonian liquids with internal heat source, Int. J. Appl. Comput. Math. (2020) · Zbl 1461.76160 · doi:10.1007/s40819-020-0781-1
[29] Shivaraj, B.; Siddheshwar, PG; Uma, D., Effects of variable viscosity and internal heat generation on Rayleigh-Bénard convection in Newtonian dielectric liquid, Int. J. Appl. Comput. Math. (2021) · Zbl 1489.76020 · doi:10.1007/s40819-021-01060-z
[30] Kanchana, C.; Zhao, Y., Effect of internal heat generation/absorption on Rayleigh-Bénard convection in water well-dispersed with nanoparticles or carbon nanotubes, Int. J. Heat Mass Transf., 127, 1031-1047 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.06.122
[31] Itaya, Y.; Okouchi, K.; Uchiyama, S.; Mori, S.; Hasatani, M., Internal heating effect and application of microwaves with fluidization of electrically conductive particles in the ceramic drying Process, Dev. Chem. Eng. Miner. Process., 4, 381-400 (2008) · doi:10.1002/apj.5500100410
[32] Venezian, G., Effect of modulation on the onset of thermal convection, J. Fluid Mech., 2, 243-254 (1969) · Zbl 0164.28901 · doi:10.1017/S0022112069001091
[33] Bhadauria, BS; Kiran, P., Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source, Ain Shams Eng. J., 4, 1287-1297 (2014) · doi:10.1016/j.asej.2014.05.005
[34] Bhadauria, BS; Singh, MK; Singh, A.; Singh, BK; Kiran, P., Stability analysis and internal heating effect on oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation, Int. J. Appl. Mech. Eng., 4, 785-803 (2016) · doi:10.1515/ijame-2016-0046
[35] Sameena, T.; Pranesh, S., Synchronous and asynchronous boundary temperature modulations on triple-diffusive convection in couple stress liquid using Ginzburg-Landau model, Int. J. Eng. Technol., 410, 645 (2018) · doi:10.14419/ijet.v7i4.10.21304
[36] Siddheshwar, PG; Uma, D.; Bhavya, S., Effects of variable viscosity and temperature modulation on linear Rayleigh-Bénard convection in Newtonian dielectric liquid, Appl. Math. Mech., 11, 1601-1614 (2019) · Zbl 1430.76175 · doi:10.1007/s10483-019-2537-9
[37] Kiran, P., Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Eng. J., 2, 639-651 (2016) · doi:10.1016/j.asej.2015.06.005
[38] Sun, Q.; Wang, S.; Zhao, M.; Yin, C.; Zhang, Q., Weak nonlinear analysis of Darcy-Brinkman convection in Oldroyd-B fluid saturated porous media under temperature modulation, Int. J. Heat Mass Transf., 138, 244-256 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.04.058
[39] Kanchana, C.; Siddheshwar, PG; Zhao, Y., Regulation of heat transfer in Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations, J. Therm. Anal. Calorim., 142, 1579 (2020) · doi:10.1007/s10973-020-09325-3
[40] Kumar, A.; Gupta, VK; Meena, N.; Hashim, I., Effect of rotational speed modulation on the weakly nonlinear heat transfer in Walter-B viscoelastic fluid in the highly permeable porous medium, Mathematics, 9, 1448 (2020) · doi:10.3390/math8091448
[41] Neha, A.; Siddheshwar, PG; Nagouda, S.; Pranesh, S., Thermoconvective instability in a vertically oscillating horizontal ferrofluid layer with variable viscosity, Heat Transf., 49, 4543 (2020) · doi:10.1002/htj.21840
[42] Siddheshwar, PG; Kanchana, C., Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids, Meccanica, 3, 451-469 (2019) · doi:10.1007/s11012-019-00957-w
[43] Meghana, J.; Pranesh, S., Individual effects of four types of rotation modulation on Rayleigh-Bénard convection in a ferromagnetic fluid with couple stress, Heat Transf., 50, 6795-6815 (2021) · doi:10.1002/htj.22204
[44] Rudziva, M.; Sibanda, P.; Noreldin, OAI; Goqo, S., On trigonometric cosine, square, sawtooth, and triangular wave-type rotational modulations on triple-diffusive convection in salted water, Heat Transf., 50, 6886-6914 (2021) · doi:10.1002/htj.22208
[45] Roslan, R.; Abdulhameed, M.; Hashim, I.; Chamkha, AJ, Non-sinusoidal waveform effects on heat transfer performance in pulsating pipe flow, Alexandria Eng. J., 55, 3309-3319 (2016) · doi:10.1016/j.aej.2016.08.012
[46] Meenakshi, N.; Siddheshwar, PG, Controlling Rayleigh-Bénard Magneto convection in Newtonian Nanoliquids by Rotational, gravitational and temperature modulations: a comparative study, Arab. J. Sci. Eng. (2022) · doi:10.1007/s13369-022-06695-8
[47] Kiran, P.; Bhadauria, BS, Chaotic convection in a porous medium under temperature modulation, Transp. Porous Med., 107, 745-763 (2015) · doi:10.1007/s11242-015-0465-1
[48] Bhadauria, BS; Kiran, P., Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter, Int. J. Heat Mass Transf., 84, 610-624 (2015) · doi:10.1016/j.ijheatmasstransfer.2014.12.032
[49] Rudziva, M.; Sibanda, P.; Noreldin, OA; Goqo, SP, A numerical study of heat and mass transfer in a Darcy porous medium saturated with a couple stress fluid under rotational modulation, Appl. Math. Modell., 104, 455-473 (2022) · Zbl 1505.76087 · doi:10.1016/j.apm.2021.12.004
[50] Bazylak, A.; Djilali, N.; Sinton, D., Natural convection with distributed heat source modulation, Int. J. Heat Mass Transf., 9, 1649-1655 (2007) · Zbl 1124.80306 · doi:10.1016/j.ijheatmasstransfer.2006.10.033
[51] Noor, AS; Sameena, T.; Pranesh, S., Heat and mass transfer of triple diffusive convection in viscoelastic liquids under internal heat source modulations, Heat Transf., 51, 239 (2021) · doi:10.1002/htj.22305
[52] Noor, AS; Sameena, T.; Pranesh, S., Effect of internal heat source modulations on the onset of triple diffusive convection in viscoelastic liquids, Indian J. Eng. Mater. Sci., 28, 509-519 (2021)
[53] Ansa, M.; Pranesh, S., Comparative study of sinusoidal and non-sinusoidal two-frequency internal heat modulation in a Rayleigh-Bénard system, Heat Transf., 51, 2780 (2021)
[54] Meghana, J.; Pranesh, S., Rayleigh-Bénard convection in a Boussinesq-Stokes ferromagnetic fluid under sinusoidal and non-sinusoidal internal heat modulation, Heat Transf. (2022) · doi:10.1002/htj.22535
[55] Lyubimova, T.; Zubova, N., Onset of convection in a ternary mixture in a square cavity heated from above at various gravity levels, Microgravity Sci. Technol., 26, 241-247 (2014) · doi:10.1007/s12217-014-9383-z
[56] Lyubimova, T.; Zubova, N.; Shevtsova, V., Effects of non-uniform temperature of the walls on the Soret experiment, Microgravity Sci. Technol., 31, 1-11 (2018) · doi:10.1007/s12217-018-9666-x
[57] Pranesh, S.; Richa, S., Three-component convection in a vertically oscillating oldroyd-b fluid with cross effects, Microgravity Sci. Technol., 34, 1-20 (2022) · doi:10.1007/s12217-022-09935-6
[58] Raghunatha, KR; Shivakumara, IS, Triple diffusive convection in a viscoelastic Oldroyd-B fluid layer, Phys. Fluids., 33, 063108 (2021) · doi:10.1063/5.0054938
[59] Bhadauria, BS; Kiran, P., Study of heat and mass transport in temperature-dependent-viscous fluid under gravity modulation, Malaya J. Matematik., 1, 33-48 (2013) · Zbl 1369.34038
[60] Huppert, HE; Turner, JS, Double-diffusive convection, J. Fluid Mech., 106, 299-329 (1981) · Zbl 0461.76076 · doi:10.1017/S0022112081001614
[61] Siddheshwar, PG; Pranesh, S., An analytical study of linear and non-linear convection in Boussinesq-Stokes suspensions, Int. J. Non-Linear Mech., 39, 165-172 (2004) · Zbl 1348.76176 · doi:10.1016/S0020-7462(02)00169-5
[62] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), New York: Oxford University Press, New York · Zbl 0142.44103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.