×

Phase response approaches to neural activity models with distributed delay. (English) Zbl 1491.92027

Summary: In weakly coupled neural oscillator networks describing brain dynamics, the coupling delay is often distributed. We present a theoretical framework to calculate the phase response curve of distributed-delay induced limit cycles with infinite-dimensional phase space. Extending previous works, in which non-delayed or discrete-delay systems were investigated, we develop analytical results for phase response curves of oscillatory systems with distributed delay using Gaussian and log-normal delay distributions. We determine the scalar product and normalization condition for the linearized adjoint of the system required for the calculation of the phase response curve. As a paradigmatic example, we apply our technique to the Wilson-Cowan oscillator model of excitatory and inhibitory neuronal populations under the two delay distributions. We calculate and compare the phase response curves for the Gaussian and log-normal delay distributions. The phase response curves obtained from our adjoint calculations match those compiled by the direct perturbation method, thereby proving that the theory of weakly coupled oscillators can be applied successfully for distributed-delay-induced limit cycles. We further use the obtained phase response curves to derive phase interaction functions and determine the possible phase locked states of multiple inter-coupled populations to illuminate different synchronization scenarios. In numerical simulations, we show that the coupling delay distribution can impact the stability of the synchronization between inter-coupled gamma-oscillatory networks.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92B25 Biological rhythms and synchronization

References:

[1] Atay, FM, Distributed delays facilitate amplitude death of coupled oscillators, Phys Rev Lett, 91, 9, 094101 (2003) · doi:10.1103/physrevlett.91.094101
[2] Atay, FM; Hutt, A., Neural fields with distributed transmission speeds and long-range feedback delays, SIAM J Appl Dyn Syst, 5, 4, 670 (2006) · Zbl 1210.34118 · doi:10.1137/050629367
[3] Aumüller, G.; Aust, G.; Conrad, A.; Engele, J.; Kirsch, J.; Maio, G.; Mayerhofer, A.; Mense, S.; Reißig, D.; Salvetter, J.; Schmidt, W.; Schmitz, F.; Schulte, E.; Spanel-Borowski, K.; Wennemuth, G.; Wolff, W.; Wurzinger, LJ; Zilch, HG, Duale Reihe Anatomie (2020), Verlag: Georg Thieme, Verlag · doi:10.1055/b-007-170976
[4] Bartos, M.; Vida, I.; Jonas, P., Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks, Nat Rev Neurosci, 8, 1, 45 (2007) · doi:10.1038/nrn2044
[5] Battaglia, D.; Witt, A.; Wolf, F.; Geisel, T., Dynamic effective connectivity of inter-areal brain circuits, PLoS Comput Biol, 8, 3, 1 (2012) · doi:10.1371/journal.pcbi.1002438
[6] Brown, E.; Moehlis, J.; Holmes, P., On the phase reduction and response dynamics of neural oscillator populations, Neural Comput, 16, 4, 673 (2004) · Zbl 1054.92006 · doi:10.1162/089976604322860668
[7] Bueno, J.; Brunner, D.; Soriano, MC; Fischer, I., Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback, Opt Express, 25, 3, 2401 (2017) · doi:10.1364/oe.25.002401
[8] Bullock, TH, Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich, Proc Natl Acad Sci, 94, 1, 1 (1997) · doi:10.1073/pnas.94.1.1
[9] Buzsáki G (2006) Rhythms of the Brain. Oxford University Press. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069 · Zbl 1204.92017
[10] Buzsáki, G.; Draguhn, A., Neuronal oscillations in cortical networks, Science, 304, 5679, 1926 (2004) · doi:10.1126/science.1099745
[11] Buzsáki, G.; Mizuseki, K., The log-dynamic brain: how skewed distributions affect network operations, Nat Rev Neurosci, 15, 4, 264 (2014) · doi:10.1038/nrn3687
[12] Buzsáki, G.; Wang, XJ, Mechanisms of gamma oscillations, Annu Rev Neurosci, 35, 1, 203 (2012) · doi:10.1146/annurev-neuro-062111-150444
[13] Buzsáki G, Logothetis SW (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(3):751. doi:10.1016/j.neuron.2013.10.002
[14] Callan, KE; Illing, L.; Gao, Z.; Gauthier, DJ; Schöll, E., Broadband chaos generated by an optoelectronic oscillator, Phys Rev Lett, 104, 113901 (2010) · doi:10.1103/PhysRevLett.104.113901
[15] Canavier, CC; Achuthan, S., Pulse coupled oscillators and the phase resetting curve, Math Biosci, 226, 2, 77 (2010) · Zbl 1194.92009 · doi:10.1016/j.mbs.2010.05.001
[16] Chalk M, Gutkin B, Denéve S (2016) Neural oscillations as a signature of efficient coding in the presence of synaptic delays. eLife 5. doi:10.7554/elife.13824
[17] Deco, G.; Kringelbach, ML, Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective, Trends Neurosci, 39, 3, 125 (2016) · doi:10.1016/j.tins.2016.01.001
[18] Deco, G.; Jirsa, V.; McIntosh, AR; Sporns, O.; Kotter, R., Key role of coupling, delay, and noise in resting brain fluctuations, Proc Natl Acad Sci, 106, 25, 10302 (2009) · doi:10.1073/pnas.0901831106
[19] Dumont, G.; Gutkin, B., Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits, PLOS Comput Biol, 15, 5, 1 (2019) · doi:10.1371/journal.pcbi.1007019
[20] Dumont, G.; Ermentrout, GB; Gutkin, B., Macroscopic phase-resetting curves for spiking neural networks, Phys Rev E, 96, 042311 (2017) · doi:10.1103/PhysRevE.96.042311
[21] Ermentrout, B., Type I membranes, phase resetting curves, and synchrony, Neural Comput, 8, 5, 979 (1996) · doi:10.1162/neco.1996.8.5.979
[22] Ermentrout, GB; Terman, DH, Mathematical Foundations of Neuroscience (2010), New York: Springer, New York · Zbl 1320.92002 · doi:10.1007/978-0-387-87708-2
[23] Fries, P., A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cognit Sci, 9, 10, 474 (2005) · doi:10.1016/j.tics.2005.08.011
[24] Fries, P., Neuronal gamma-band synchronization as a fundamental process in cortical computation, Annu Rev Neurosci, 32, 1, 209 (2009) · doi:10.1146/annurev.neuro.051508.135603
[25] Giacomelli, G.; Calzavara, M.; Arecchi, F., Instabilities in a semiconductor laser with delayed optoelectronic feedback, Opt Commun, 74, 1, 97 (1989) · doi:10.1016/0030-4018(89)90498-7
[26] Glass, L., Synchronization and rhythmic processes in physiology, Nature, 410, 6825, 277 (2001) · doi:10.1038/35065745
[27] Hoppensteadt, FC; Izhikevich, EM, Weakly connected neural networks (1997), New York: Springer, New York · Zbl 0887.92003 · doi:10.1007/978-1-4612-1828-9
[28] Just, W.; Pelster, A.; Schanz, M.; Schöll, E., Delayed complex systems: an overview, Philos Trans R Soc A Math Phys Eng Sci, 368, 1911, 303 (2010) · Zbl 1181.34003 · doi:10.1098/rsta.2009.0243
[29] Kotani, K.; Yamaguchi, I.; Ogawa, Y.; Jimbo, Y.; Nakao, H.; Ermentrout, GB, Adjoint method provides phase response functions for delay-induced oscillations, Phys Rev Lett, 109, 044101 (2012) · doi:10.1103/PhysRevLett.109.044101
[30] Kuelbs, D.; Dunefsky, J.; Monga, B.; Moehlis, J., Analysis of neural clusters due to deep brain stimulation pulses, Biol Cybern, 114, 6, 589 (2020) · Zbl 1460.92097 · doi:10.1007/s00422-020-00850-w
[31] Kyrychko, YN; Blyuss, KB; Schöll, E., Amplitude death in systems of coupled oscillators with distributed-delay coupling, Eur Phys J B, 84, 2, 307 (2011) · doi:10.1140/epjb/e2011-20677-8
[32] Kyrychko, YN; Blyuss, KB; Schöll, E., Amplitude and phase dynamics in oscillators with distributed-delay coupling, Philos Trans R Soc A Math Phys Eng Sci, 371, 1999, 20120466 (2013) · Zbl 1353.34045 · doi:10.1098/rsta.2012.0466
[33] Kyrychko, YN; Blyuss, KB; Schöll, E., Synchronization of networks of oscillators with distributed delay coupling, Chaos Interdiscip J Nonlinear Sci (2014) · Zbl 1361.34033 · doi:10.1063/1.4898771
[34] Liang X, Tang M, Dhamala M, Liu Z (2009) Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys Rev E 80(6):066202. doi:10.1103/physreve.80.066202
[35] Lüdge, K.; Lingnau, B., Laser dynamics and delayed feedback, 31-47 (2020), New York: Springer, New York · doi:10.1007/978-1-0716-0421-2_729
[36] Maris, E.; Fries, P.; van Ede, F., Diverse phase relations among neuronal rhythms and their potential function, Trends Neurosci, 39, 2, 86 (2016) · doi:10.1016/j.tins.2015.12.004
[37] Meyer, U.; Shao, J.; Chakrabarty, S.; Brandt, SF; Luksch, H.; Wessel, R., Distributed delays stabilize neural feedback systems, Biol Cybern, 99, 1, 79 (2008) · Zbl 1157.92009 · doi:10.1007/s00422-008-0239-8
[38] Milton JG (2015) Time delays and the control of biological systems: an overview—JM acknowledges support from the W. R. Kenan, Jr. C, Trust., IFAC-PapersOnLine 48(12):87. doi:10.1016/j.ifacol.2015.09.358. 12th IFAC Workshop onTime Delay SystemsTDS
[39] Monga, B.; Wilson, D.; Matchen, T.; Moehlis, J., Phase reduction and phase-based optimal control for biological systems: a tutorial, Biol Cybern, 113, 1-2, 11 (2018) · Zbl 1411.92122 · doi:10.1007/s00422-018-0780-z
[40] Omelchenko I, Omel’chenko OE, Hövel P, Schöll E (2013) When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys Rev Lett 110(22):224101. doi:10.1103/physrevlett.110.224101
[41] Pariz A, Fischer I, Valizadeh A, Mirasso C (2021) Transmission delays and frequency detuning can regulate information flow between brain regions. PLoS Comput Biol 17(4):1. doi:10.1371/journal.pcbi.1008129
[42] Petkoski, S.; Jirsa, VK, Transmission time delays organize the brain network synchronization, Philos Trans R Soc A Math Phys Eng Sci, 377, 2153, 20180132 (2019) · Zbl 1462.92022 · doi:10.1098/rsta.2018.0132
[43] Petkoski, S.; Spiegler, A.; Proix, T.; Aram, P.; Temprado, JJ; Jirsa, VK, Heterogeneity of time delays determines synchronization of coupled oscillators, Phys Rev E, 94, 012209 (2016) · doi:10.1103/PhysRevE.94.012209
[44] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 6, 421 (1992) · doi:10.1016/0375-9601(92)90745-8
[45] Reyner-Parra, D.; Huguet, G., bioRxiv (2021) · doi:10.1101/2021.08.13.456218
[46] Rosin, DP; Callan, KE; Gauthier, DJ; Schöll, E., Pulse-train solutions and excitability in an optoelectronic oscillator, Europhys Lett, 96, 3, 34001 (2011) · doi:10.1209/0295-5075/96/34001
[47] Schultheiss, NW; Prinz, AA; Butera, RJ, Phase Response Curves in Neuroscience (2012), New York: Springer, New York · doi:10.1007/978-1-4614-0739-3
[48] Schwemmer, MA; Lewis, TJ, The Theory of Weakly Coupled Oscillators, 3-31 (2012), New York: Springer, New York · doi:10.1007/978-1-4614-0739-3_1
[49] Soriano, MC; García-Ojalvo, J.; Mirasso, CR; Fischer, I., Complex photonics: dynamics and applications of delay-coupled semiconductors lasers, Rev Mod Phys, 85, 421 (2013) · doi:10.1103/RevModPhys.85.421
[50] Strüber, M.; Sauer, JF; Jonas, P.; Bartos, M., Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus, Nat Commun, 8, 1, 758 (2017) · doi:10.1038/s41467-017-00936-3
[51] Totz, JF; Rode, J.; Tinsley, MR; Showalter, K.; Engel, H., Spiral wave chimera states in large populations of coupled chemical oscillators, Nat Phys, 14, 3, 282 (2017) · doi:10.1038/s41567-017-0005-8
[52] Uhlhaas, PJ; Singer, W., Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron, 52, 1, 155 (2006) · doi:10.1016/j.neuron.2006.09.020
[53] Waxman, SG; Bennett, MVL, Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system, Nat New Biol, 238, 85, 217 (1972) · doi:10.1038/newbio238217a0
[54] Wille, C.; Lehnert, J.; Schöll, E., Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes, Phys. Rev. E, 90, 3, 032908 (2014) · doi:10.1103/physreve.90.032908
[55] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, 12, 1, 1 (1972) · doi:10.1016/s0006-3495(72)86068-5
[56] Winfree, AT, The geometry of biological time (2001), New York: Springer, New York · Zbl 1014.92001 · doi:10.1007/978-1-4757-3484-3
[57] Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609. doi:10.1126/science.1139597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.