×

On high order numerical schemes for fractional differential equations by block-by-block approach. (English) Zbl 1510.65164

Summary: The exact solutions to nonlinear fractional problems usually have initial singularity. Taking the singularity into account, the change of variable and the block-by-block approach are introduced to propose a novel high-order scheme. It is proved that our proposed scheme can be of order \(3 + \alpha\) under the non-smooth solutions. Numerical examples are shown to validate our theoretical results.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
34A08 Fractional ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
Full Text: DOI

References:

[1] Ji, C.; Dai, W.; Sun, Z., Numerical schemes for solving the time-fractional dual-phase-lagging heat conduction model in a double-layered nanoscale thin film, J. Sci. Comput., 81, 1767-1800 (2019) · Zbl 1434.65120
[2] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[3] Glöckle, W. G.; Nonnenmacher, T. F., A fractional calculus approach to self-similar protein dynamics, Biophys., 68, 1, 46-53 (1995)
[4] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E., 61, 1, 132 (2000)
[5] Fu, H.; Wu, G.; Yang, G.; Huang, L., Continuous time random walk to a general fractional Fokker-Planck equation on fractal media, Eur. Phys. J., 17, 1-7 (2021)
[6] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[7] Fan, Q.; Wu, G.; Fu, H., A note on function space and boundedness of the general fractional integral in continuous time random walk, J. Nonlinear. Math. Phy., 1-8 (2021)
[8] Iomin, A., Fractional-time Schrödinger equation: fractional dynamics on a comb, Chaos. Soli. Frac., 44, 348-352 (2011) · Zbl 1225.81053
[9] Naber, M., Time fractional Schrödinger equation, J. Math. Phys., 45, 3339-3352 (2004) · Zbl 1071.81035
[10] Tofighi, A., Probability structure of time fractional Schrödinger equation, Acta. Phys. Pol. A., 116, 114-118 (2009)
[11] Garra, R., Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rock, Phys. Rev. E., 84, 3, 036605 (2011)
[12] Esen, A.; Bulut, F.; Oruç, O., A unified approach for the numerical solution of time fractional burgers’ type equations, Eur. Phys. J. Plus., 131, 116 (2016)
[13] Liu, C.; Chang, J., Recovering a source term in the time-fractional burgers equation by an energy boundary functional equation, Appl. Math. Lett., 79, 138-145 (2018) · Zbl 1466.65106
[14] Debnath, L., Partial Differential Equations for Scientists and Engineers (1997), Birkhauser: Birkhauser Boston · Zbl 0892.35001
[15] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[16] Li, L.; Zhou, B.; Chen, X.; Wang, Z., Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay, Appl. Math. Comput., 337, 144-152 (2018) · Zbl 1427.65170
[17] Li, D.; Wang, J.; Zhang, J., Unconditionally convergent L1-Galerkin FEMs for nonlinear time fractional Schrödinger equations, SIAM J. Sci. Comput., 39, 6, A3067-A3088 (2017) · Zbl 1379.65079
[18] Li, D.; Zhang, C., Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simu., 172, 244-257 (2020) · Zbl 1482.34189
[19] Zhang, Q.; Zhang, L.; Sun, H., A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Appl. Math., 389, 113355 (2021) · Zbl 1462.65119
[20] Ran, M.; Zhou, X., An implicit difference scheme for the time-fractional Cahn-Hilliard equations, Math. Comput. Simul., 180, 61-71 (2021) · Zbl 1524.65389
[21] Stynes, M.; O’Riordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[22] Kumar, D.; Chaudhary, S.; Kumar, V., Fractional Cank-Nicolson-Galerkin finite element scheme for the time-fractional nonlinear diffusion equation, Numer. Meth. Part. Differ. Eq., 35, 6, 2056-2075 (2019) · Zbl 1431.65133
[23] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, J. Comput. Appl. Math., 280, 14-36 (2015) · Zbl 1305.65211
[24] Huang, C.; Stynes, M., Error analysis of a finite element method with GMMP temporal discretisation for a time-fractional diffusion equation, Comput. Math. Appl., 79, 9, 2784-2794 (2020) · Zbl 1437.65191
[25] Li, C.; Wang, Z., Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution, Math. Comput. Simul., 182, 838-857 (2021) · Zbl 1524.65564
[26] Yuan, H., An efficient spectral-Galerkin method for fractional reaction-diffusion equations in unbounded domains, J. Comput. Phys., 428, 110083 (2021) · Zbl 07511437
[27] Jia, J.; Jiang, X.; Zhang, H., An L1 Legendre-Galerkin spectral method with fast algorithm for the two-dimensional nonlinear coupled time fractional schrodinger equation and its parameter estimation, Comput. Math. Appl., 82, 13-35 (2021) · Zbl 1524.65657
[28] Yang, Y.; Wang, J.; Zhang, S.; Tohidi, E., Convergence analysis of space-time Jacobi spectral collocation method for solving time-fractional Schrödinger equations, Appl. Math. Comput., 387, 124489 (2020) · Zbl 1488.65525
[29] Liao, H.; Li, D.; Zhang, J., Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026
[30] Gracia, J.; Stynes, M., Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems, J. Comput. Appl. Math., 273, 103-115 (2015) · Zbl 1295.65081
[31] Gao, G.; Sun, Z.; Zhang, H., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088
[32] Alikhanov, A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261
[33] Li, C.; Zeng, F., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 2, 149-179 (2013) · Zbl 1267.65094
[34] Huang, J.; Tang, Y.; Vázquez, L., Convergence analysis of a block-by-block method for fractional differential equations, Numer. Math. Theor. Meth. Appl., 5, 2, 229-241 (2012) · Zbl 1265.65141
[35] Kashkari, B.; Muhammed, I., Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order, Appl. Math. Comput., 290, 281-291 (2016) · Zbl 1410.34021
[36] Al-Mdallal, Q.; Omer, A., Fractional-order Legendre-collocation method for solving fractional initial value problems, Appl. Math. Comput., 321, 74-84 (2018) · Zbl 1426.65110
[37] Syam, M.; Mohammed, A., Fractional differential equations with Atangana-Baleanu fractional derivative: analysis and applications, Chaos Solitons Fractals, 2, 100013 (2019)
[38] Langlands, T.; Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[39] Sun, Z.; Wu, X., A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56, 2, 193-209 (2006) · Zbl 1094.65083
[40] Li, C.; Deng, W.; Wu, Y., Numerical analysis and physical simulations for the time fractional radial diffusion equation, Comput. Math. Appl., 62, 1024-1037 (2011) · Zbl 1228.65144
[41] Li, D.; Liao, H.; Sun, W.; Wang, J.; Zhang, J., Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Commun. Comput. Phys., 24, 86-103 (2018) · Zbl 1488.65431
[42] Yang, X.; Dang, X., A new parallel difference algorithm based on improved alternating segment Crank-Nicolson scheme for time fractional reaction-diffusion equation, Adv. Differ. Eq., 2019, 1, 1-18 (2019) · Zbl 1487.65123
[43] Li, D.; Wu, C.; Zhang, J., Linearized galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80, 403-419 (2019) · Zbl 1418.65179
[44] Ran, M.; Zhang, C., Linearized Crank-Nicolson scheme for the nonlinear time-space fractional schrodinger equations, J. Comput. Appl. Math., 355, 218-231 (2019) · Zbl 1419.65027
[45] Li, Y., Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear. Sci. Numer. Simul., 15, 9, 2284-2292 (2010) · Zbl 1222.65087
[46] Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B., The spectral analysis for a singular fractional differential equation with a signed measure, Appl. Math. Comput., 257, 252-263 (2015) · Zbl 1338.34032
[47] Cao, J.; Xu, C., A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238, 154-168 (2013) · Zbl 1286.65092
[48] Li, D.; Sun, W.; Wu, C., A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math. Theor. Meth. Appl., 14, 2, 355-376 (2021) · Zbl 1488.65256
[49] Qin, H.; Li, D.; Zhang, Z., A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput., 89, 3, 1-20 (2021) · Zbl 1481.65151
[50] She, M.; Li, D.; Sun, H., A transformed L1 method for solving the multi-term time-fractional diffusion problem, Math. Comput. Simu., 193, 584-606 (2022) · Zbl 1540.65435
[51] Diethelm, K.; Ford, N., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[52] Kumar, P.; Agrawal, O. P., An approximate method for numerical solution of fractional differential equations, Signal. Process., 86, 10, 2602-2610 (2006) · Zbl 1172.94436
[53] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional adams method, Numer. Algorithms, 36, 31-52 (2004) · Zbl 1055.65098
[54] Cao, W.; Zeng, F.; Zhang, Z.; Karniadakis, G., Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38, A3070-A3093 (2016) · Zbl 1355.65104
[55] Dixon, J.; McKee, S., Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 66, 11, 535-544 (1986) · Zbl 0627.65136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.