×

A space-time spectral method for the 1-D Maxwell equation. (English) Zbl 1484.65262

Summary: A Legendre-tau space-time spectral method is established for the 1-D Maxwell equation. The polynomials of different degrees are used to approximate the electric and magnetic fields, respectively, so that they can be decoupled in computation. Also, the time multi-interval Legendre-tau space-time spectral method is considered to keep the long-time computation stable. Error estimates for the method of single and multi-internal are given, respectively. Moreover, the space-time spectral method is applied to the numerical solutions of the 1-D nonlinear Maxwell equation and describes its implicit-explicit iteration scheme. Numerical examples are compared with some other methods, which verifies the effectiveness of the methods for the 1-D Maxwell equation.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q61 Maxwell equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
78M22 Spectral, collocation and related methods applied to problems in optics and electromagnetic theory

References:

[1] Y, Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations, SIAM J. Numer. Anal., 50, 79-104 (2012) · Zbl 1247.65121 · doi:10.1137/11082258X
[2] Y, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Commun. Comput. Phys., 7, 1-46 (2010) · Zbl 1364.65205
[3] B, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47, 3240-3268 (2009) · Zbl 1204.65123 · doi:10.1137/080737472
[4] H, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53, 206-227 (2015) · Zbl 1327.65179 · doi:10.1137/140956750
[5] H, Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems, ESAIM: M2AN, 50, 1083-1105 (2016) · Zbl 1351.65078 · doi:10.1051/m2an/2015068
[6] H, Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow, Math. Comp., 88, 91-121 (2019) · Zbl 1405.65129
[7] B, Legendre-Gauss collocation methods for ordinary differential equations, Adv. Comput. Math., 30, 249-280 (2009) · Zbl 1162.65375 · doi:10.1007/s10444-008-9067-6
[8] C, A multistep Legendre-Gauss spectral collocation method for nonlinear Volterra integral equations, SIAM J. Numer. Anal., 52, 1953-1980 (2014) · Zbl 1305.65246 · doi:10.1137/130915200
[9] B, A spectral collocation method for solving initial value problems of first order ordinary differential equations, DCDS-B, 14, 1029-1054 (2010) · Zbl 1205.65225 · doi:10.3934/dcdsb.2010.14.1029
[10] J, Single and multi-interval Legendre spectral methods in time for parabolic equations, Numer. Meth. Part. D. E., 22, 1007-1034 (2006) · Zbl 1103.65107 · doi:10.1002/num.20135
[11] T, A block pseudospectral method for Maxwell’s equations. I. One-dimensional case, J. Comput. Phys., 140, 47-65 (1998) · Zbl 0908.65090 · doi:10.1006/jcph.1998.5883
[12] T, Block pseudospectral methods for Maxwell’s equations. II. Two-dimensional, discontinuous-coefficient case, SIAM J. Sci. Comput., 21, 1146-1167 (1999) · Zbl 0949.65107 · doi:10.1137/S106482759833320X
[13] T, A new fdtd algorithm based on alternating-direction implicit method, IEEE T. Microw. Theory, 47, 2003-2007 (1999) · doi:10.1109/22.795075
[14] K, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE T. Antenn. Propag., 14, 302-307 (1996) · Zbl 1155.78304
[15] W, Energy-conserved splitting FDTD methods for Maxwell’s equations, Numer. Math., 108, 445-485 (2008) · Zbl 1185.78020 · doi:10.1007/s00211-007-0123-9
[16] W, Energy-conserved splitting finite-difference time-domain methods for Maxwell’s equations in three dimensions, SIAM J. Numer. Anal., 48, 1530-1554 (2010) · Zbl 1220.78116 · doi:10.1137/090765857
[17] F, Energy-conserved splitting spectral methods for two dimensional Maxwell’s equations, J. Comput. Appl. Math., 265, 301-321 (2014) · Zbl 1293.78014 · doi:10.1016/j.cam.2013.09.048
[18] H, Multidomain Legendre-Galerkin Chebyshev-collocation method for one-dimensional evolution equations with discontinuity, Appl. Numer. Math., 111, 246-259 (2017) · Zbl 1353.65107 · doi:10.1016/j.apnum.2016.09.010
[19] D, Multidomain Legendre tau method for the 1-D Maxwell equation with discontinuous solutions, J. Numer. Methods Comput. Appl., 39, 288-298 (2018) · Zbl 1438.65249
[20] S, High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200, 60-103 (2004) · Zbl 1050.78018 · doi:10.1016/j.jcp.2004.03.008
[21] J, An \(h-p\) version of the continuous Petrov-Galerkin time stepping method for nonlinear second-order delay differential equations, Appl. Numer. Math., 143, 1-19 (2019) · Zbl 1477.65125
[22] Y, An \(hp\)-version of the \(C^0\)-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems, Adv. Comput. Math., 46, 56 (2020) · Zbl 1441.65068 · doi:10.1007/s10444-020-09800-3
[23] Thomas, J. W, Numerical partial differential equations: finite difference methods, New York: Springer-Verlag, 1995,261-360. · Zbl 0831.65087
[24] C. Bernardi, Y. Maday, Spectral methods, In: <i>Handbook of numerical analysis</i>, <b>5</b> (1997), 209-485.
[25] Y, Legendre-tau-Galerkin and spectral collocation method for nonlinear evolution equations, Appl. Numer. Math., 153, 52-65 (2020) · Zbl 1436.65149 · doi:10.1016/j.apnum.2020.02.001
[26] C, A third order linearized BDF scheme for Maxwell’s equations with nonlinear conductivity using finite element method, Int. J. Numer. Anal. Model., 14, 511-531 (2017) · Zbl 1383.78044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.