×

Tensor \(N\)-tubal rank and its convex relaxation for low-rank tensor recovery. (English) Zbl 1459.68181

Summary: The recent popular tensor tubal rank, defined based on tensor singular value decomposition (t-SVD), yields promising results. However, its framework is applicable only to three-way tensors and lacks the flexibility necessary to handle different correlations along different modes. To tackle these two issues, we define a new tensor unfolding operator, named mode-\( k_1 k_2\) tensor unfolding, as the process of lexicographically stacking all mode-\( k_1 k_2\) slices of an \(N\)-way tensor into a three-way tensor, which is a three-way extension of the well-known mode-\(k\) tensor matricization. On this basis, we define a novel tensor rank, named the tensor \(N\)-tubal rank, as a vector consisting of the tubal ranks of all mode-\( k_1 k_2\) unfolding tensors, to depict the correlations along different modes. To efficiently minimize the proposed \(N\)-tubal rank, we establish its convex relaxation: the weighted sum of the tensor nuclear norm (WSTNN). Then, we apply the WSTNN to low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA). The corresponding WSTNN-based LRTC and TRPCA models are proposed, and two efficient alternating direction method of multipliers (ADMM)-based algorithms are developed to solve the proposed models. Numerical experiments demonstrate that the proposed models significantly outperform the compared ones.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
15A69 Multilinear algebra, tensor calculus
62H25 Factor analysis and principal components; correspondence analysis

Software:

FSIM; tproduct

References:

[1] Cai, J.-F.; Candès, E. J.; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20, 4, 1956-1982 (2010) · Zbl 1201.90155
[2] Candès, E. J.; Recht, B., Exact matrix completion via convex optimization, Found. Comput. Math., 9, 6, 717-772 (2009) · Zbl 1219.90124
[3] Cao, W.; Wang, Y.; Sun, J.; Meng, D.; Yang, C.; Cichocki, A.; Xu, Z., Total variation regularized tensor RPCA for background subtraction from compressive measurements, IEEE Trans. Image Process., 25, 9, 4075-4090 (2016) · Zbl 1408.94065
[4] Carroll, J. D.; Pruzansky, S.; Kruskal, J. B., Candelinc: a general approach to multidimensional analysis of many-way arrays with linear constraints on parameters, Psychometrika, 45, 1, 3-24 (1980) · Zbl 0478.62050
[5] Davenport, M. A.; Romberg, J., An overview of low-rank matrix recovery from incomplete observations, IEEE J. Sel. Top. Signal Process., 10, 4, 608-622 (2016)
[6] Ding, M.; Huang, T.-Z.; Ji, T.-Y.; Ji, T.-Y.; Zhao, X.-L.; Yang, J.-H., Low-rank tensor completion using matrix factorization based on tensor train rank and total variation, J. Sci. Comput., 81, 2, 941-964 (2019) · Zbl 1466.94005
[7] Fu, X.; Ma, W. K.; Bioucas-Dias, J. M.; Chan, T. H., Semiblind hyperspectral unmixing in the presence of spectral library mismatches, IEEE Trans. Geosci. Remote Sens., 54, 9, 5171-5184 (2016)
[8] Gandy, S.; Recht, B.; Yamada, I., Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Prob., 27, 2, Article 025010 pp. (2011) · Zbl 1211.15036
[9] Goldfarb, D.; Qin, Z. T., Robust low-rank tensor recovery: models and algorithms, SIAM J. Matrix Anal. Appl., 35, 1, 225-253 (2014) · Zbl 1296.65086
[10] He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q., Non-local meets global: an integrated paradigm for hyperspectral denoising, (In the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)), 6868-6877
[11] Hillar, C. J.; Lim, L.-H., Most tensor problems are NP-hard, J. ACM, 60, 6 (2013), 45:1-45:39 · Zbl 1281.68126
[12] Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; Yang, Y., The twist tensor nuclear norm for video completion, IEEE Trans. Neural Netw. Learn. Syst., 28, 12, 2961-2973 (2017)
[13] Huang, Y.-M.; Yan, H.-Y.; Wen, Y.-W.; Yang, X., Rank minimization with applications to image noise removal, Inf. Sci., 429, 147-163 (2018) · Zbl 1436.94008
[14] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Deng, L.-J., A non-convex tensor rank approximation for tensor completion, Appl. Math. Model., 48, 410-422 (2017) · Zbl 1480.90259
[15] Ji, T.-Y.; Huang, T.-Z.; Zhao, X.-L.; Ma, T.-H.; Liu, G., Tensor completion using total variation and low-rank matrix factorization, Inf. Sci., 326, 243-257 (2016) · Zbl 1387.94038
[16] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Deng, L.-J., Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm, J. Comput. Appl. Math. (2019)
[17] Jiang, T.-X.; Huang, T.-Z.; Zhao, X.-L.; Ji, T.-Y.; Deng, L.-J., Matrix factorization for low-rank tensor completion using framelet prior, Inf. Sci., 436, 403-417 (2018) · Zbl 1448.15015
[18] Kajo, I.; Kamel, N.; Ruichek, Y.; Malik, A. S., SVD-based tensor-completion technique for background initialization, IEEE Trans. Image Process., 27, 6, 3114-3126 (2018) · Zbl 1409.94282
[19] Kilmer, M. E.; Braman, K.; Hao, N.; Hoover, R. C., Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34, 1, 148-172 (2013) · Zbl 1269.65044
[20] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500 (2009) · Zbl 1173.65029
[21] Li, M.; Xie, Q.; Zhao, Q.; Wei, W.; Gu, S.; Tao, J.; Meng, D., Video rain streak removal by multiscale convolutional sparse coding, (In the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)), 6644-6653
[22] Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J. M., Fusing hyperspectral and multispectral images via coupled sparse tensor factorization, IEEE Trans. Image Process., 27, 8, 4118-4130 (2018) · Zbl 1409.94364
[23] X. Li, Y. Ye, X. Xu, Low-rank tensor completion with total variation for visual data in painting, in: AAAI, 2017, pp. 2210-2216.
[24] Liu, J.; Musialski, P.; Wonka, P.; Ye, J., Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1, 208-220 (2013)
[25] Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S., Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern Anal. Mach. Intell. (2019)
[26] Madathil, B.; George, S. N., Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery, Inf. Sci., 423, 376-397 (2018) · Zbl 1436.94012
[27] Mian, A.; Hartley, R., Hyperspectral video restoration using optical flow and sparse coding, Opt. Express, 20, 10, 10658-10673 (2012)
[28] Mu, C.; Huang, B.; Wright, J.; Goldfarb, D., Square deal: Lower bounds and improved relaxations for tensor recovery, (In the International Conference on Machine Learning (ICML) (2014)), 73-81
[29] Ng, M. K.; Yuan, Q.; Yan, L.; Sun, J., An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data, IEEE Trans. Geosci. Remote Sens., 55, 6, 3367-3381 (2017)
[30] Peng, Y.; Suo, J.; Dai, Q.; Xu, W., Reweighted low-rank matrix recovery and its application in image restoration, IEEE Trans. Cybern., 44, 12, 2418-2430 (2014)
[31] Semerci, O.; Hao, N.; Kilmer, M. E.; Miller, E. L., Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23, 4, 1678-1693 (2014) · Zbl 1374.94335
[32] Wang, Y.; Meng, D.; Yuan, M., Sparse recovery: from vectors to tensors, Natl. Sci. Rev., 5, 5, 756-767 (2018)
[33] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 4, 600-612 (2004)
[34] Wei, W.; Yi, L.; Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z., Should we encode rain streaks in video as deterministic or stochastic?, (In the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)), 2516-2525
[35] Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z., Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery, IEEE Trans. Pattern Anal. Mach. Intell., 40, 8, 1888-1902 (2018)
[36] Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang, Y. Qu, On unifying multi-view self-representations for clustering by tensor multi-rank minimization, Int. J. Comput. Vis. (2016) 1-23.
[37] Yang, J.-H.; Zhao, X.-L.; Ji, T.-Y.; Ma, T.-H.; Huang, T.-Z., Low-rank tensor train for tensor robust principal component analysis, Appl. Math. Comput., 367, Article 124783 pp. (2020) · Zbl 1433.90118
[38] Yang, J.-H.; Zhao, X.-L.; Ma, T.-H.; Chen, Y.; Huang, T.-Z.; Ding, M., Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, J. Comput. Appl. Math., 363, 124-144 (2020) · Zbl 1429.94027
[39] Q. Yao, J.T.-Y. Kwok, B. Han, Efficient nonconvex regularized tensor completion with structure-aware proximal iterations, in: In the International Conference on Machine Learning (ICML), vol. 97, 2019, pp. 7035-7044.
[40] Yao, Q.; Kwok, J. T.-Y.; Wang, T.; Liu, T., Large-scale low-rank matrix learning with nonconvex regularizers, IEEE Trans. Pattern Anal. Mach. Intell., 41, 11, 2628-2643 (2019)
[41] Zhang, L.; Zhang, L.; Mou, X.; Zhang, D., FSIM: a feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 8, 2378-2386 (2011) · Zbl 1373.62333
[42] Zhang, X., A nonconvex relaxation approach to low-rank tensor completion, IEEE Trans. Neural Netw. Learn. Syst., 30, 6, 1659-1671 (2019)
[43] Zhang, Z.; Aeron, S., Exact tensor completion using t-SVD, IEEE Trans. Signal Process., 65, 6, 1511-1526 (2017) · Zbl 1414.94741
[44] Zhao, Q.; Zhang, L.; Cichocki, A., Bayesian CP factorization of incomplete tensors with automatic rank determination, IEEE Trans. Pattern Anal. Mach. Intell., 37, 9, 1751-1763 (2015)
[45] X.-L. Zhao, W.-H. Xu, T.-X. Jiang, Y. Wang, M.K. Ng, Deep plug-and-play prior for low-rank tensor completion, Neurocomputing, to be published.https://doi.org/10.1016/j.neucom.2020.03.018.
[46] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Y. Chen, W. He, Double factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image, IEEE Trans. Geosci. Remote Sens., to be published.https://doi.org/10.1109/TGRS.2020.2987954.
[47] Zheng, Y.-B.; Huang, T.-Z.; Zhao, X.-L.; Jiang, T.-X.; Ma, T.-H.; Ji, T.-Y., Mixed noise removal in hyperspectral image via low-fibered-rank regularization, IEEE Trans. Geosci. Remote Sens., 58, 1, 734-749 (2020)
[48] Zhou, P.; Lu, C.; Lin, Z.; Zhang, C., Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27, 3, 1152-1163 (2018) · Zbl 1409.94796
[49] Zhuang, L.; Bioucas-Dias, J. M., Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 11, 3, 730-742 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.