×

A mixed approach to the Poisson problem with line sources. (English) Zbl 1466.35093

Summary: In this work we consider the dual-mixed variational formulation of the Poisson equation with a line source. The analysis and approximation of this problem is nonstandard, as the line source causes the solutions to be singular. We start by showing that this problem admits a solution in appropriately weighted Sobolev spaces. Next, we show that given some assumptions on the problem parameters, the solution admits a splitting into higher- and lower-regularity terms. The lower-regularity terms are here explicitly known and capture the solution singularities. The higher-regularity terms, meanwhile, are defined as the solution of an associated mixed Poisson equation. With the solution splitting in hand, we then define a singularity removal-based mixed finite element method in which only the higher-regularity terms are approximated numerically. This method yields a significant improvement in the convergence rate when compared to approximating the full solution. In particular, we show that the singularity removal-based method yields optimal convergence rates for lowest-order Raviart-Thomas and discontinuous Lagrange elements.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J75 Singular elliptic equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] I. Aavatsmark and R. A. Klausen, Well index in reservoir simulation for slanted and slightly curved wells in 3d grids, SPE J., 8 (2003), pp. 41-48.
[2] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2000. · Zbl 1008.65076
[3] R. Al-Khoury, P. G. Bonnier, and R. B. J. Brinkgreve, Efficient finite element formulation for geothermal heating systems. Part I: Steady state, Internat. J. Numer. Methods Engrg., 63 (2005), pp. 988-1013. · Zbl 1084.76044
[4] T. Apel, O. Benedix, D. Sirch, and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side, SIAM J. Numer. Anal., 49 (2011), pp. 992-1005. · Zbl 1229.65203
[5] T. Arbogast and A. Taicher, A linear degenerate elliptic equation arising from two-phase mixtures, SIAM J. Numer. Anal., 54 (2016), pp. 3105-3122. · Zbl 1457.65177
[6] I. Babuška and M. B. Rosenzweig, A finite element scheme for domains with corners, Numer. Math., 20 (1972), pp. 1-21. · Zbl 0252.65084
[7] T. B\aerland, M. Kuchta, and K.-A. Mardal, Multigrid methods for discrete fractional Sobolev spaces, SIAM J. Sci. Comput., 41 (2019), pp. A948-A972. · Zbl 1419.65102
[8] C. Bernardi, C. Canuto, and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal., 25 (1988), pp. 1237-1271. · Zbl 0666.76055
[9] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd ed., Cambridge University Press, Cambridge, 2007. · Zbl 1118.65117
[10] F. Brezzi and M. Fortin, eds., Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. · Zbl 0788.73002
[11] Z. Cai and C. R. Westphal, A weighted h(div) least-squares method for second-order elliptic problems, SIAM J. Numer. Anal., 46 (2008), pp. 1640-1651. · Zbl 1168.65069
[12] L. Cattaneo and P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments, Int. J. Numer. Methods Biomed. Eng., 30 (2014), pp. 1347-1371.
[13] D. Cerroni, F. Laurino, and P. Zunino, Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells, Int. J. Geomath., 10 (2019), https://doi.org/10.1007/s13137-019-0115-9. · Zbl 1425.35032
[14] L. Chen, M. J. Holst, and J. Xu, The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM J. Numer. Anal., 45 (2007), pp. 2298-2320. · Zbl 1152.65478
[15] C. D’Angelo, Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: Applications to one- and three-dimensional coupled problems, SIAM J. Numer. Anal., 50 (2012), pp. 194-215. · Zbl 1246.65215
[16] C. D’Angelo and A. Quarteroni, On the coupling of 1d and 3d diffusion-reaction equations: Application to tissue perfusion problems, Math. Models Methods Appl. Sci., 18 (2008), pp. 1481-1504. · Zbl 1359.35200
[17] Y. Ding and L. Jeannin, A new methodology for singularity modelling in flow simulations in reservoir engineering, Comput. Geosci., 5 (2001), pp. 93-119. · Zbl 0989.86002
[18] Q. Fang, S. Sakadzić, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas, Oxygen advection and diffusion in a three-dimensional vascular anatomical network, Opt. Express., 16 (2008), pp. 17530-17541.
[19] I. Gansca, W. Bronsvoort, G. Coman, and L. Tambulea, Self-intersection avoidance and integral properties of generalized cylinders, Computer Aided Geom. Design, 19 (2002), pp. 695-707. · Zbl 1043.68104
[20] I. G. Gjerde, K. Kumar, and J. M. Nordbotten, A singularity removal method for coupled 1d-3d flow models, Comput. Geosci., 24 (2019), pp. 443-457. · Zbl 1434.76067
[21] I. G. Gjerde, K. Kumar, J. M. Nordbotten, and B. Wohlmuth, Splitting method for elliptic equations with line sources, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 1715-1739. · Zbl 1433.35129
[22] L. Grinberg, E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis, Modeling blood flow circulation in intracranial arterial networks: A comparative 3d/1d simulation study, Ann. Biomed. Eng., 39 (2011), pp. 297-309.
[23] E. Hodneland, X. Hu, and J. M. Nordbotten, Well-Posedness, Discretization and Preconditioners for a Class of Models for Mixed-Dimensional Problems with High Dimensional Gap, preprint, arXiv:2006.12273, 2020.
[24] K. E. Holter, M. Kuchta, and K.-A. Mardal, Sub-Voxel Perfusion Modeling in Terms of Coupled 3d-1d Problem, preprint, arXiv:1803.04896, 2018. · Zbl 1427.65167
[25] M. Javaux, T. Schröder, J. Vanderborght, and H. Vereecken, Use of a three-dimensional detailed modeling approach for predicting root water uptake, Vadose Zone J., 7 (2008), https://doi.org/10.2136/vzj2007.0115.
[26] T. Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math., 19 (1994), pp. 95-113. · Zbl 0801.46037
[27] T. Koch, K. Heck, N. Schröder, H. Class, and R. Helmig, A new simulation framework for soil-root interaction, evaporation, root growth, and solute transport, Vadose Zone J., 17 (2018), https://doi.org//10.2136/vzj2017.12.0210.
[28] T. Koch, M. Schneider, R. Helmig, and P. Jenny, Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources, J. Comput. Phys., 410 (2020), 109370. · Zbl 1436.76064
[29] V. A. Kondratiev and O. Oleinik, Boundary-value problems for partial differential equations in non-smooth domains, Russ. Math. Surv., 38 (1983), pp. 1-86. · Zbl 0548.35018
[30] T. Köppl, E. Vidotto, B. I. Wohlmuth, and P. Zunino, Mathematical modelling, analysis and numerical approximation of second order elliptic problems with inclusions, in Numerical Mathematics and Advanced Applications ENUMATH 2015, Springer, New York, 2016. · Zbl 1393.35172
[31] T. Köppl, E. Vidotto, and B. Wohlmuth, A local error estimate for the Poisson equation with a line source term, in Numerical Mathematics and Advanced Applications ENUMATH, Springer, New York, 2016, pp. 421-429. · Zbl 1352.65441
[32] T. Köppl, E. Vidotto, B. Wohlmuth, and P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions, Math. Models Methods Appl. Sci., 28 (2018), pp. 953-978. · Zbl 1393.35172
[33] V. A. Koslov, V. G. Mazya, and J. Rossman, Elliptic Boundary Value Problems in Domains with Point Singularities, Math. Surveys Monogr., Vol. 52, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0947.35004
[34] M. Kuchta, M. Nordaas, J. C. G. Verschaeve, M. Mortensen, and K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2d and 1d domains, SIAM J. Sci. Comput., 38 (2016), pp. B962-B987. · Zbl 1352.65099
[35] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, New York, 1993. · Zbl 0455.46034
[36] F. Laurino and P. Zunino, Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 2047-2080. · Zbl 1435.35155
[37] A. A. Linninger, I. G. Gould, T. Marinnan, C.-Y. Hsu, M. Chojecki, and A. Alaraj, Cerebral microcirculation and oxygen tension in the human secondary cortex, Ann. Biomed. Eng., 41 (2013), pp. 2264-2284.
[38] A. Llau, L. Jason, F. Dufour, and J. Baroth, Finite element modelling of 1d steel components in reinforced and prestressed concrete structures, Eng. Struct., 127 (2016), pp. 769-783.
[39] V. Mazya and J. Rossmann, Elliptic Equations in Polyhedral Domains, American Mathematical Society, Providence, RI, 2010. · Zbl 1106.35015
[40] J. N. McDonald and N. A. Weiss, International Edition: A Course in Real Analysis, Vol. 2, Elsevier, New York, 1999. · Zbl 0965.26001
[41] M. Nabil and P. Zunino, A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs, R. Soc. Open Sci., 3 (2016), 160287.
[42] D. Notaro, L. Cattaneo, L. Formaggia, A. Scotti, and P. Zunino, A Mixed Finite Element Method for Modeling the Fluid Exchange between Microcirculation and Tissue Interstitium, Springer, Cham, Switzerland, 2016, pp. 3-25. · Zbl 1371.76095
[43] L. Possenti, G. Casagrande, S. D. Gregorio, P. Zunino, and M. Constantino, Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system, Microvasc. Res., 122 (2019), pp. 101-110.
[44] J. Reichold, M. Stampanoni, A. L. Keller, A. Buck, P. Jenny, and B. Weber, Vascular graph model to simulate the cerebral blood flow in realistic vascular networks, J. Cereb. Blood Flow Metab., 29 (2009), pp. 1429-1443, PMID: 19436317.
[45] T. Secomb, R. Hsu, M. Dewhirst, B. Klitzman, and J. Gross, Analysis of oxygen transport to tumor tissue by microvascular networks, Int. J. Radiat. Oncol. Biol. Phys., 25 (1993), pp. 481-489.
[46] B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, Berlin, 2000. · Zbl 0949.31006
[47] E. Vidotto, T. Koch, T. Köppl, R. Helmig, and B. Wohlmuth, Hybrid models for simulating blood flow in microvascular networks, Multiscale Model. Simul., 17 (2019), pp. 1076-1102. · Zbl 1433.76200
[48] C. J. Weiss, Finite-element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, 82 (2017), pp. E155-E167.
[49] C. Wolfsteiner, L. J. Durlofsky, and K. Aziz, Calculation of well index for nonconventional wells on arbitrary grids, Comput. Geosci., 7 (2003), pp. 61-82. · Zbl 1094.76548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.