×

Sharp well-posedness and ill-posedness of the three-dimensional primitive equations of geophysics in Fourier-Besov spaces. (English) Zbl 1453.35152

Summary: We study the well-posedness and ill-posedness for the Cauchy problem of the three-dimensional primitive equations describing the large-scale oceanic and atmospheric circulations. By using the Littlewood-Paley analysis technique, we prove that the Cauchy problem of the three-dimensional primitive equations with the Prandtl number \(P = 1\) is locally well-posed in the Fourier-Besov spaces \(\dot{F B}_{p, r}^{2 - \frac{3}{p}}(\mathbb{R}^3)\) for \(1 < p \leq \infty, 1 \leq r < \infty\) and \(\dot{F B}_{1, r}^{- 1}(\mathbb{R}^3)\) for \(1 \leq r \leq 2\), and is globally well-posed in these spaces when the initial data are small. We also verify that such problem is ill-posed in \(\dot{F B}_{1, r}^{- 1}(\mathbb{R}^3)\) for \(2 < r \leq \infty\), which implies that our work completes a dichotomy of well-posedness and ill-posedness for the three-dimensional primitive equations in the Fourier-Besov space framework.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35R25 Ill-posed problems for PDEs
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
Full Text: DOI

References:

[1] Babin, A.; Mahalov, A.; Nicolaenko, B., On the regularity of three-dimensional rotating Euler-Boussinesq equations, Math. Models Methods Appl. Sci., 9, 1089-1121 (1999) · Zbl 1035.76055
[2] Cushman-Roisin, B., Introduction to Geophysical Fluid Dynamics (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey
[3] Pedlosky, J., Geophysical Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0713.76005
[4] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05
[5] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem I, Arch. Ration. Mech. Anal., 16, 269-315 (1964) · Zbl 0126.42301
[6] Cannone, M.; Meyer, Y.; Planchon, F., Solutions auto-similaires des équations de Navier-Stokes(French), Sém. équa. Dériv. Partielles (1993) · Zbl 0882.35090
[7] S. Cui, Sharp well-posedness and ill-posedness of the Navier-Stokes initial value problem in Besov-type spaces, arXiv:1505.00865; S. Cui, Sharp well-posedness and ill-posedness of the Navier-Stokes initial value problem in Besov-type spaces, arXiv:1505.00865
[8] Giga, Y., Solutions of semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62, 186-212 (1986) · Zbl 0577.35058
[9] Giga, Y.; Miyakawa, T., Navier-Stokes flows in \(R^3\) with measurea as initial vorticity and the Morrey spaces, Comm. Partial Differential Equations, 14, 577-618 (1989) · Zbl 0681.35072
[10] Kato, T., Strong \(L^p\)-solutions of the Navier-Stokes equation in \(R^m\), with applications to weak solutions, Math. Z., 187, 471-480 (1984) · Zbl 0545.35073
[11] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 22-35 (2001) · Zbl 0972.35084
[12] Lei, Z.; Lin, F., Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64, 1297-1304 (2011) · Zbl 1225.35165
[13] Bourgain, J.; Pavlović, N., Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255, 2233-2247 (2008) · Zbl 1161.35037
[14] Germain, P., The second iterate for the Navier-Stokes equation, J. Funct. Anal., 255, 2248-2264 (2008) · Zbl 1173.35097
[15] Yoneda, T., Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near \(bmo^{−1}\), J. Funct. Anal., 258, 3376-3387 (2010) · Zbl 1190.35178
[16] Wang, B., Ill-posedness for the Navier-Stokes equations in critical Besov spaces \(\dot{B}_{\infty, q}^s\), Adv. Math., 268, 350-372 (2015) · Zbl 1316.35232
[17] Chemin, J.-Y.; Desjardin, B.; Gallagher, I.; Grenier, E., Anisotropy and dispersion in rotating fluids, (Nonlinear PDEs and Applications. Nonlinear PDEs and Applications, Stud. Math. Appl., vol. 31 (2002), North Holland) · Zbl 1034.35107
[18] Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E., (Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations. Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32 (2006), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford) · Zbl 1205.86001
[19] Fang, D.; Han, B.; Hieber, M., Global existence results for the Navier-Stokes equations in the rotational framework in Fourier-Besov spaces, (Arendt, W.; Chill, R.; Tomilov, Y., Operator Semogroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics. Operator Semogroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Operator Theory: Advances and Applications, vol. 250 (2015), Birkhäuser: Birkhäuser Cham) · Zbl 1334.35229
[20] Fang, D.; Han, B.; Hieber, M., Local and global existence results for the Navier-Stokes equations in the rotational framework, Commun. Pure Appl. Anal., 14, 609-622 (2015) · Zbl 1314.35096
[21] Giga, Y.; Inui, K.; Mahalov, A.; Saal, J., Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57, 2775-2791 (2008) · Zbl 1159.35055
[22] Hieber, M.; Shibata, Y., The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., 265, 481-491 (2010) · Zbl 1190.35175
[23] Iwabuchi, T.; Takada, R., Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann., 357, 727-741 (2013) · Zbl 1290.35185
[24] Iwabuchi, T.; Takada, R., Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal., 267, 1321-1337 (2014) · Zbl 1296.35119
[25] Koh, Y.; Lee, S.; Takada, R., Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differential Equations, 19, 857-878 (2014) · Zbl 1358.76023
[26] Konieczny, P.; Yoneda, T., On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations, 250, 3859-3873 (2011) · Zbl 1211.35218
[27] Sun, J.; Yang, M.; Cui, S., Existence and analyticity of mild solutions for the 3D rotating Navier-Stokes equations, Ann. Mat. Pura Appl., 196, 1203-1229 (2017) · Zbl 1382.35196
[28] Chemin, J.-Y., À Propos d’un problème de pénalisation de type antisymétrique, J. Math. Pures Appl., 76, 739-755 (1997) · Zbl 0896.35103
[29] Charve, F., Global well-posedness and asymptotics for a geophysical fluid system, Comm. Partial Differential Equations, 29, 1919-1940 (2004) · Zbl 1156.35449
[30] Charve, F., Global well-posedness for the primitive equations with less regular initial data, Ann. Fac. Sci. Toulouse Math., 17, 221-238 (2008) · Zbl 1160.35301
[31] Koba, H.; Mahalov, A.; Yoneda, T., Global well-posedness for the rotating Navier-Stokes-Boussinesq equations with stratification effects, Adv. Math. Sci. Appl., 22, 61-90 (2012) · Zbl 1283.35086
[32] Iwabuchi, T.; Mahalov, A.; Takada, R., Global solutions for the incompressible rotating stably stratified fluids, Math. Nachr., 290, 4, 613-631 (2017) · Zbl 1360.76075
[33] Babin, A.; Mahalov, A.; Nicolaenko, B., Strongly stratified limit of 3D primitive equations in an infinite layer, Contemp. Math., 283 (2001) · Zbl 1001.76030
[34] Charve, F., Convergence of weak solutions for the primitive system of the quasigeostrophic equations, Asymptot. Anal., 42, 173-209 (2005) · Zbl 1082.35125
[35] Charve, F., Asymptotics and vortex patches for the quasigeostrophic approximation, J. Math. Pures Appl., 85, 493-539 (2006) · Zbl 1091.35066
[36] F. Charve, Asymptotics and lower bound for the lifespan of solutions to the Primitive Equations, arXiv:1411.6859; F. Charve, Asymptotics and lower bound for the lifespan of solutions to the Primitive Equations, arXiv:1411.6859 · Zbl 1405.35157
[37] Charve, F.; Ngo, V., Global existence for the primitive equations with small anisotropic viscosity, Rev. Mat. Iberoam., 27, 1-38 (2011) · Zbl 1228.35175
[38] Bahouri, H.; Chemin, J.-Y.; Danchin, R., (Fourier Analysis and Nonlinear Partial Differential Equations. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren Math. Wiss, vol. 343 (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg) · Zbl 1227.35004
[39] Bony, J.-M., Symbolic calculus and propagation of singularities for nonlinear partial differential equations(French), Ann. Sci. École Norm. Sup., 14, 209-246 (1981) · Zbl 0495.35024
[40] Cannone, M.; Karch, G., Smooth or singular solutions to the Navier-Stokes system?, J. Differential Equations, 197, 247-274 (2004) · Zbl 1042.35043
[41] Bejenaru, I.; Tao, T., Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233, 228-259 (2006) · Zbl 1090.35162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.