×

Higher-order Sobolev-type embeddings on Carnot-Carathéodory spaces. (English) Zbl 1377.46019

The author provides sufficient conditions for higher-order Sobolev-type embeddings for the class of rearrangement-invariant function spaces on bounded domains of Carnot-Carathéodory spaces. The most general condition takes the form of the inequality \[ \left\|\int\limits_t^1\frac{f(s)}{I(s)}\left(\int\limits_t^s\frac{dr}{I(r)} \right)^{m-1}\, ds \right\|_{\mathbb Y(0,1)} \leq C\|f\|_{\mathbb X(0,1)}, \] where \(\mathbb X\) and \(\mathbb Y\) are given rearrangement-invariant spaces, \(I(s)\) is a lower bound for the isoperimetric function \(I_{X,\Omega}(s)\) of a domain \(\Omega\) with respect to a system of vector fields \(X\). Under this condition, the embedding \(V^m_X\mathbb X(\Omega) \to\mathbb Y(\Omega)\) holds. The proof partly follows the approach of D.E.Edmunds et al. [J. Funct. Anal. 170, No. 2, 307–355 (2000; Zbl 0955.46019)]. Particular results are provided for regular domains (\(X\)-PS domains), and in the case of Lebesgue spaces classical-like results are obtained. In the case of the Heisenberg group and \(\mathbb H\)-John domains, the condition is shown to be necessary as well.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
53C17 Sub-Riemannian geometry

Citations:

Zbl 0955.46019
Full Text: DOI

References:

[1] F.Barthe, P.Cattiaux, and C.Roberto, Isoperimetry between exponential and Gaussian, Electron. J. Probab.12, 1212-1237 (2007). · Zbl 1132.26005
[2] C.Bennett and R.Sharpley, Interpolation of Operators, Pure Applied Mathematics Vol. 129 (Academic Press, New York, 1988). · Zbl 0647.46057
[3] C.Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math.30, 207-216 (1975). · Zbl 0292.60004
[4] L.Capogna, D.Danielli, S. D.Pauls, and J. T.Tyson, An Introduction to the Heisenberg Group and the sub‐Riemannian Isoperimetric Problem (Birkhäuser, Basel, 2007). · Zbl 1138.53003
[5] L.Capogna and N.Garofalo, Boundary behaviour of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl.4(4-5), 403-432 (1998). · Zbl 0926.35043
[6] D.Chamoro, Improved Sobolev inequalities and Muckenhoupt weights on stratified Lie groups, J. Math. Anal. Appl.377, 695-709 (2011). · Zbl 1218.22006
[7] A.Cianchi, Orlicz-Sobolev boundary trace embeddings, Math. Z.266, 431-449 (2010). · Zbl 1208.46028
[8] A.Cianchi and L.Pick, Sobolev embeddings into \(B M O , V M O\), and \(L_\infty \), Ark. Math.36, 317-340 (1998). · Zbl 1035.46502
[9] A.Cianchi, L.Pick, and L.Slavíková, Higher‐order Sobolev embeddings and isoperimetric inequalities, Adv. Math.273, 568-650 (2015). · Zbl 1334.46027
[10] W.Cohn, N.Lam, G.Lu, and Y.Yang, The Moser-Trudinger inequality in unbounded domains of Heisenberg group and sub‐elliptic equations, Nonlinear Anal.75, 4483-4495 (2012). · Zbl 1254.35063
[11] W. S.Cohn and G.Lu, Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J.50(4), (2001). · Zbl 1019.43009
[12] W. S.Cohn and G.Lu, Best constants for Moser-Trudinger inequalities, fundamental solutions and one‐parameter representation formulas on groups of Heisenberg Type, Acta Math. Sinica18(2), 375-390 (2002). · Zbl 1011.22004
[13] W. S.Cohn, G.Lu, and P.Wang, Sub‐elliptic global high order Poincaré inequalities in stratified Lie groups and applications, J. Funct. Anal.249, 393-424 (2007). · Zbl 1129.22007
[14] X.Cui, N.Lam, and G.Lu, Characterisations of Sobolev spaces in Euclidean spaces and Heisenberg groups, Appl. Math. J. Chinese Univ.531-547 (2013). · Zbl 1299.46032
[15] D. E.Edmunds, R.Kerman, and L.Pick, Optimal Sobolev imbeddings involving rearrangement‐invariant quasinorms, J. Funct. Anal.170, 307-355 (2000). · Zbl 0955.46019
[16] H.Federer and W.Fleming, Normal and integral currents, Ann. of Math.72, 458-520 (1960). · Zbl 0187.31301
[17] N.Garofalo and D.‐M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathédory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.40(10), 1081-1144 (1996). · Zbl 0880.35032
[18] M.Gromov, Carnot-Carathéodory spaces seen from within, In Sub‐Riemannian Geometry, Progress in Matehmatics, Vol. 144 (Brikhäuser, Basel, 1996), pp. 79-323. · Zbl 0864.53025
[19] L.Guangzhou, Improved Gagliardo-Nirenberg inequalities on Heisenberg type groups, Acta Math. Sci.1583-1590 (2011). · Zbl 1249.22007
[20] P.Hajłasz and P.Koskela, Sobolev Met Poincaré, Memoirs of the American Mathematical Society145, 688 (2000). · Zbl 0954.46022
[21] L.Hörmander, Hypoelliptic second order differential equations, Acta Math.119, 147-171 (1967). · Zbl 0156.10701
[22] D.Jerison and C. E.Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math.46, 80-147 (1982). · Zbl 0514.31003
[23] D.Jerison and J. M.Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc.1(1), 1-13 (1988). · Zbl 0634.32016
[24] P. W.Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math.147(1-2), 71-88 (1981). · Zbl 0489.30017
[25] A.Korányi, Kelvin transforms and harmonic polynomials on the Heisenberg group, J. Funct. Anal.49(2), 177-185 (1982). · Zbl 0514.43006
[26] J.Manfredi and V. VeradeSerio, Rearrangements in Carnot groups, Preprint, 2000.
[27] V. G.Maz’ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR133, 527-530 (1960) (Russian); English translation: Soviet Math. Dokl. 1, 882-885 (1960). · Zbl 0114.31001
[28] V. G.Maz’ya, On p‐conductivity and theorems on embedding certain functional spaces into a C‐space, Dokl. Akad. Nauk. SSSR140, 299-302 (1961) (Russian); English translation: Soviet Math. Dokl. 3 (1962).
[29] K.Moien and V.Naibo, Higher‐order multilinear Poincaré and Sobolev inequalities in Carnot groups, Potential Anal.231-245 (2014). · Zbl 1303.26019
[30] R.Monti and D.Morbideli, Regular domains in homogeneous groups, Trans. Amer. Math. Soc.357(8), 2975-3011 (2005). · Zbl 1067.43003
[31] A.Nagel, E. M.Stein, and S.Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math.155, 103-147 (1985). · Zbl 0578.32044
[32] L.Pick, A.Kufner, O.John, and S.Fučík, Function Spaces, Volume 1, 2nd Revised and Extended Edition, De Gruyter Series in Nonlienar Analysis and Applications, Vol. 14 (Walter De Gruyter GmbH, Berlin/Boston, 2013). · Zbl 1275.46002
[33] Y.Qiaohua, On critical cases of Sobolev’s inequalities for Heisenberg groups, Acta Math. Sci.1584-1592 (2012). · Zbl 1274.22008
[34] Y.Yang, Trudinger-Moser inequalities on the entire Heisenberg group, Math. Nachr.287(8‐9), 1071-1080 (2014). · Zbl 1309.46019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.