×

A fourth-order model for MEMS with clamped boundary conditions. (English) Zbl 1309.35162

The typical microelectromechanical system (MEMS) device is made of a rigid conducting ground plate above which a clamped deformable membrane coated with a thin conducting film is suspend. Application of a voltage difference induces a Coulomb force which, in turn, generates a displacement of the membrane. When the applied voltage exceeds a certain threshold value, the membrane might can lapse (touch down) on the ground plate.
The dynamic and stationary behavior of such MEM model is described by an initial-boundary value problem for the fourth order partial
differential equation with respect to the displacement \(u=u(t,x)\) of the membrane \(\Omega \subset \mathbb{R}\) \[ \gamma^{2} \partial^{2}_{t} u+\partial_{t}u+B\triangle^{2}u-T\triangle u=-\frac{\lambda}{(1+u)^2}, \quad t>0, x \in \Omega \]
\[ u=\partial_{v} u=0, t>0, x \in \partial\Omega; u(0,\cdot)=u^{0}, \partial_{t} u(0,\cdot)=u^{1}, x \in \Omega, \] where \(\gamma^{2} \partial^{2}_{t} u\) and \(\partial_{t} u\) account the inertia and damping effect, \(B \bigtriangleup^{2} u\) and \(-T\bigtriangleup u\) reflect the bending and stretching of the membrane, the right-hand-side of the PDE having the singularity \(u=-1\), reflects the action of the electrostatic force. The parameter \(\lambda\) is proportional to the square of the applied voltage. It is shown the existence of the threshold value \(\lambda_{*}>0\) such that no radially symmetric stationary solution exists for \(\lambda > \lambda_{*}\), but for \(\lambda \in (0,\lambda_{*})\) at least two solutions exists. For the relevant hyperbolic and parabolic evolution problems local and global well-posedness results are obtained together with the occurrence of finite time singularities when \(\lambda\geq \lambda_{*}\).

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35Q60 PDEs in connection with optics and electromagnetic theory
35L75 Higher-order nonlinear hyperbolic equations
35K35 Initial-boundary value problems for higher-order parabolic equations
74F15 Electromagnetic effects in solid mechanics

References:

[1] W.Arendt, ‘Semigroups and evolution equations: functional calculus, regularity and kernel estimates’, Evolutionary equations, Handbook of Differential Equations I (North‐Holland, Amsterdam, 2004) 1-85. · Zbl 1082.35001
[2] E.Berchio, F.Gazzola, T.Weth, ‘Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems’, J. reine angew. Math., 620 (2008) 165-183. · Zbl 1182.35109
[3] T.Boggio, ‘Sulle funzioni di Green d’ordine \(m\)’, Rend. Circ. Mat. Palermo, 20 (1905) 97-135. · JFM 36.0827.01
[4] H.Brezis, F.Merle, ‘Uniform estimates and blow‐up behavior for solutions of \(- \operatorname{\Delta} u = V ( x ) e^u\) in two dimensions’, Comm. Partial Differential Equations, 16 (1991) 1223-1253. · Zbl 0746.35006
[5] B.Buffoni, E. N.Dancer, J. F.Toland, ‘The sub‐harmonic bifurcation of Stokes waves’, Arch. Ration. Mech. Anal., 152 (2000) 241-271. · Zbl 0962.76012
[6] P. H.Chang, H. A.Levine, ‘The quenching of solutions of semilinear hyperbolic equations’, SIAM J. Math. Anal., 12 (1981) 893-903. · Zbl 0474.35063
[7] G.Cimatti, ‘A free boundary problem in the theory of electrically actuated microdevices’, Appl. Math. Lett., 20 (2007) 1232-1236. · Zbl 1131.74015
[8] C.Cowan, P.Esposito, N.Ghoussoub, A.Moradifam, ‘The critical dimension for a fourth order elliptic problem with singular nonlinearity’, Arch. Ration. Mech. Anal., 198 (2010) 763-787. · Zbl 1225.35093
[9] M. G.Crandall, P. H.Rabinowitz, ‘Bifurcation, perturbation of simple eigenvalues and linearized stability’, Arch. Ration. Mech. Anal., 52 (1973) 161-180. · Zbl 0275.47044
[10] J.Dávila, I.Flores, I.Guerra, ‘Multiplicity of solutions for a fourth order equation with power‐type nonlinearity’, Math. Ann., 348 (2010) 143-193. · Zbl 1220.35047
[11] J.Escher, P.Laurençot, C.Walker, ‘A parabolic free boundary problem modeling electrostatic MEMS’, Arch. Ration. Mech. Anal., 211 (2014) 389-417. · Zbl 1287.35106
[12] P.Esposito, N.Ghoussoub, Y.Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics 20 (Courant Institute of Mathematical Sciences, New York, 2010). · Zbl 1223.35003
[13] F.Gazzola, H.‐C.Grunau, G.Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics 1991 (Springer, Berlin, 2010). · Zbl 1239.35002
[14] Y.Guo, ‘Dynamical solutions of singular wave equations modeling electrostatic MEMS’, SIAM J. Appl. Dyn. Syst., 9 (2010) 1135-1163. · Zbl 1203.35177
[15] Z.Guo, B.Lai, D.Ye, ‘Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions’, Proc. Amer. Math. Soc., 142 (2014) 2027-2034. · Zbl 1310.35127
[16] Z.Guo, J.Wei, ‘On a fourth order nonlinear elliptic equation with negative exponent’, SIAM J. Math. Anal., 40 (2008/09) 2034-2054. · Zbl 1175.35144
[17] N. I.Kavallaris, A. A.Lacey, C. V.Nikolopoulos, D. E.Tzanetis, ‘A hyperbolic non‐local problem modelling MEMS technology’, Rocky Mountain J. Math., 41 (2011) 505-534. · Zbl 1228.35132
[18] A. A.Lacey, ‘Mathematical analysis of thermal runaway for spatially inhomogeneous reactions’, SIAM J. Appl. Math., 43 (1983) 1350-1366. · Zbl 0543.35047
[19] P.Laurençot, C.Walker, ‘A stationary free boundary problem modeling electrostatic MEMS’, Arch. Ration. Mech. Anal., 207 (2013) 139-158. · Zbl 1268.78004
[20] P.Laurençot, C.Walker, ‘Sign‐preserving property for some fourth‐order elliptic operators in one dimension and radial symmetry’, J. Anal. Math., to appear. · Zbl 1330.35114
[21] F.Lin, Y.Yang, ‘Nonlinear non‐local elliptic equation modelling electrostatic actuation’, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007) 1323-1337. · Zbl 1143.78001
[22] A. E.Lindsay, J.Lega, ‘Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor’, SIAM J. Appl. Math., 72 (2012) 935-958. · Zbl 1254.35130
[23] A. E.Lindsay, J.Lega, F. J.Sayas, ‘The quenching set of a MEMS capacitor in two‐dimensional geometries’, J. Nonlinear Sci., 23 (2013) 807-834. · Zbl 1284.35072
[24] A. E.Lindsay, M. J.Ward, ‘Asymptotics of some nonlinear eigenvalue problems modelling a MEMS capacitor. Part II: multiple solutions and singular asymptotics’, European J. Appl. Math., 22 (2011) 83-123. · Zbl 1220.35108
[25] J.‐J.Moreau, ‘Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires’, C. R. Acad. Sci. Paris, 255 (1962) 238-240. · Zbl 0109.08105
[26] A.Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44 (Springer, New York, 1983). · Zbl 0516.47023
[27] J. A.Pelesko, D. H.Bernstein, Modeling MEMS and NEMS (Chapman & Hall/CRC, Boca Raton, FL, 2003). · Zbl 1031.74003
[28] W.Rudin, Functional analysis, 2nd edn, International Series in Pure and Applied Mathematics (McGraw‐Hill Inc., New York, 1991). · Zbl 0867.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.