×

On Segal–Bargmann analysis for finite Coxeter groups and its heat kernel. (English) Zbl 1231.33016

Three versions of the Segal-Bargmann transform associated with finite reflection groups and rational Dunkl operators are presented in this paper. Some results obtained in this setting by S. Ben Saïd and B. Ørsted in [Math. Ann. 334, No. 2, 281–323 (2006; Zbl 1109.33015)] and F. Soltani in [Pac. J. Math. 214, No. 2, 379–397 (2004; Zbl 1052.33014)] are extended.

MSC:

33C52 Orthogonal polynomials and functions associated with root systems
45H05 Integral equations with miscellaneous special kernels
46E15 Banach spaces of continuous, differentiable or analytic functions
81S99 General quantum mechanics and problems of quantization

References:

[1] Ali S., Antoine J.-P., Gazeau J.-P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000) · Zbl 1064.81069
[2] Asai N.: Hilbert space of analytic functions associated with the modified Bessel function and related orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 505–514 (2005) · Zbl 1087.46020 · doi:10.1142/S0219025705002098
[3] Bargmann V.: On a Hilbert space of analytic functions and an associated integral transform, Part I. Commun. Pure Appl. Math. 14, 187–214 (1961) · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[4] Ben Saïd S., Ørsted B.: Analysis on flat symmetric spaces. J. Math. Pure Appl. (9) 84(10), 1393–1426 (2005) · Zbl 1080.43008
[5] Ben Saïd S., Ørsted B.: Segal–Bargmann transforms associated with finite Coxeter groups. Math. Ann. 334, 281–323 (2006) · Zbl 1109.33015 · doi:10.1007/s00208-005-0718-3
[6] Betancor J.J., Sifi M., Trimèche K.: Hypercyclic and chaotic convolution operators associated with the Dunkl operator on $${\(\backslash\)mathbb{C}}$$ . Acta Math. Hung. 106, 101–116 (2005) · Zbl 1085.44003 · doi:10.1007/s10474-005-0009-1
[7] Demni, N.: Note on radial Dunkl processes, arXiv: 0812.4269v2 [math.PR]
[8] Demni, N.: Radial Dunkl processes associated with dihedral systems, arXiv: 0812.4002v2 [math.PR] · Zbl 1181.33009
[9] Echavarría, L.: Personal communication, June (2009)
[10] Gallardo L., Yor M.: Some new examples of Markov processes which enjoy the time-inversion property. Probab. Theory Relat. Fields 132, 150–162 (2005) · Zbl 1087.60058 · doi:10.1007/s00440-004-0399-y
[11] Gallardo, L., Yor, M.: Some remarkable properties of the Dunkl Martingales, Lecture Notes in Mathematics, vol. 1874, pp. 337–356. Springer, Berlin (2006) · Zbl 1128.60027
[12] Hall B.C.: The Segal–Bargmann ”Coherent State” transform for compact Lie groups. J. Funct. Anal. 122, 103–151 (1994) · Zbl 0838.22004 · doi:10.1006/jfan.1994.1064
[13] Helgason S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978) · Zbl 0451.53038
[14] Humphreys J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028
[15] Marron, C.S.: Semigroups and the Bose-like oscillator, Ph.D. Dissertation, The University of Virginia (1994)
[16] Ólafsson G., Schlichtkrull H.: The Segal–Bargmann transform for the heat equation associated with root systems. Adv. Math. 208(1), 422–437 (2007) · Zbl 1141.43009 · doi:10.1016/j.aim.2006.01.014
[17] Perelomov A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986) · Zbl 0605.22013
[18] Rosenblum M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. In: Feintuch, A., Gohberg, I. (eds) Operator Theory Advances and Applications, vol. 73, ”Nonselfadjoint Operators and Related Topics, pp. 369–396. Birkhäuser, Switzerland (1994) · Zbl 0826.33005
[19] Rösler M.: Dunkl operators: theory and applications. In: Koelink, E., Assche, W. (eds) Lecture Notes in Mathematics, vol. 1817, pp. 93–135. Springer, Berlin (2003) · Zbl 1029.43001
[20] Rösler M.: Generalized Hermite polynomials and the heat equation for the Dunkl operators. Comm. Math. Phys. 192, 519–542 (1998) · Zbl 0908.33005 · doi:10.1007/s002200050307
[21] Rösler M., Voit M.: Markov processes related with Dunkl operators. Adv. Appl. Math. 21, 577–643 (1998) · Zbl 0919.60072 · doi:10.1006/aama.1998.0609
[22] Segal, I.E.: Mathematical problems of relativistic physics. In: Kac, M. (ed.) Proceedings of the Summer Seminar, Boulder, Colorado (1960), vol. II, Lectures in Appl. Math., Am. Math. Soc., Providence (1963) · Zbl 0099.22402
[23] Soltani F.: Generalized Fock spaces and Weyl commutation relations for the Dunkl kernel. Pac. J. Math. 214, 379–397 (2004) · Zbl 1052.33014 · doi:10.2140/pjm.2004.214.379
[24] Sontz S.B.: The {\(\mu\)}-deformed Segal–Bargmann transform is a Hall type transform. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 269–289 (2009) arXiv:0707.4359v3 (math-ph) · Zbl 1194.46112 · doi:10.1142/S021902570900363X
[25] Sontz, S.B.: How the {\(\mu\)}-deformed Segal–Bargmann space gets two measures. In: Proceedings of the 11th Workshop: Noncommutative Harmonic Analysis with Applications to Probability, Bedlewo, Poland, 17–23 August (2008). (Banach Center Publications, Warsaw, Poland) (to appear) arXiv:0809.3606 (math-ph)
[26] Thangavelu S., Xu Y.: Convolution operator and maximal function for Dunkl transform. J. Anal. Math. 97, 25–55 (2005) · Zbl 1131.43006 · doi:10.1007/BF02807401
[27] Wigner E.P.: Do the equations of motion determine the quantum mechanical commutation relations?. Phys. Rev. 77, 711–712 (1950) · Zbl 0036.14301 · doi:10.1103/PhysRev.77.711
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.