×

The computation of resonances in open systems using a perfectly matched layer. (English) Zbl 1198.65224

Summary: We consider the problem of computing resonances in open systems. We first characterize resonances in terms of (improper) eigenfunctions of the Helmholtz operator on an unbounded domain. The perfectly matched layer (PML) technique has been successfully applied to the computation of scattering problems. We shall see that the application of PML converts the resonance problem to a standard eigenvalue problem (still on an infinite domain). This new eigenvalue problem involves an operator which resembles the original Helmholtz equation transformed by a complex shift in the coordinate system. Our goal will be to approximate the shifted operator first by replacing the infinite domain by a finite (computational) domain with a convenient boundary condition and second by applying finite elements on the computational domain. We shall prove that the first of these steps leads to eigenvalue convergence (to the desired resonance values) which is free from spurious computational eigenvalues provided that the size of computational domain is sufficiently large. The analysis of the second step is classical. Finally, we illustrate the behavior of the method applied to numerical experiments in one and two spatial dimensions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

deal.ii; SLEPc; PETSc
Full Text: DOI

References:

[1] J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269 – 279. · Zbl 0219.47011
[2] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
[3] E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Comm. Math. Phys. 22 (1971), 280 – 294. · Zbl 0219.47005
[4] Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185 – 200. · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[5] Jean-Pierre Berenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 127 (1996), no. 2, 363 – 379. · Zbl 0862.65080 · doi:10.1006/jcph.1996.0181
[6] Daniele Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math. 87 (2000), no. 2, 229 – 246. · Zbl 0967.65106 · doi:10.1007/s002110000182
[7] D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation, SIAM J. Numer. Anal. 36 (1999), no. 4, 1264 – 1290. · Zbl 1025.78014 · doi:10.1137/S003614299731853X
[8] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525 – 549. · Zbl 0305.65064
[9] James H. Bramble and Joseph E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), no. 258, 597 – 614. · Zbl 1116.78019
[10] W. Chew and W. Weedon. A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt. Techno. Lett., 13(7):599-604, 1994.
[11] Francis Collino and Peter Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. 19 (1998), no. 6, 2061 – 2090. · Zbl 0940.78011 · doi:10.1137/S1064827596301406
[12] David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, 2nd ed., Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998. · Zbl 0893.35138
[13] Stefan Hein, Thorsten Hohage, and Werner Koch, On resonances in open systems, J. Fluid Mech. 506 (2004), 255 – 284. · Zbl 1073.76062 · doi:10.1017/S0022112004008584
[14] Stefan Hein, Thorsten Hohage, Werner Koch, and Joachim Schöberl, Acoustic resonances in a high-lift configuration, J. Fluid Mech. 582 (2007), 179 – 202. · Zbl 1114.76062 · doi:10.1017/S0022112007005770
[15] Vicente Hernandez, Jose E. Roman, and Vicente Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31 (2005), no. 3, 351 – 362. · Zbl 1136.65315 · doi:10.1145/1089014.1089019
[16] P. D. Hislop and I. M. Sigal, Introduction to spectral theory, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. With applications to Schrödinger operators. · Zbl 0855.47002
[17] Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. · Zbl 0342.47009
[18] S. Kim and J. E. Pasciak. Analysis of a Cartesian PML approximation to acoustic scattering problems in \( \mathbb{R}^2\). In preparation. · Zbl 1277.76093
[19] Fumio Kikuchi, On a discrete compactness property for the Nédélec finite elements, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 3, 479 – 490. · Zbl 0698.65067
[20] Matti Lassas and Erkki Somersalo, Analysis of the PML equations in general convex geometry, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 5, 1183 – 1207. · Zbl 1200.35013 · doi:10.1017/S0308210500001335
[21] Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. · Zbl 1024.78009
[22] P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in \Bbb R³, Math. Comp. 70 (2001), no. 234, 507 – 523. · Zbl 1035.65131
[23] John E. Osborn, A note on a perturbation theorem for the matrix eigenvalue problem., Numer. Math. 13 (1969), 152 – 153. · Zbl 0186.05703 · doi:10.1007/BF02163233
[24] Barry Simon, Resonances in \?-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), 247 – 274. · Zbl 0252.47009 · doi:10.2307/1970847
[25] Lloyd N. Trefethen, Pseudospectra of linear operators, SIAM Rev. 39 (1997), no. 3, 383 – 406. · Zbl 0896.15006 · doi:10.1137/S0036144595295284
[26] Maciej Zworski, Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys. 229 (2002), no. 2, 293 – 307. · Zbl 1021.35077 · doi:10.1007/s00220-002-0683-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.