×

A local two-radii theorem on the sphere. (English. Russian original) Zbl 1066.43004

St. Petersbg. Math. J. 16, No. 3, 453-475 (2005); translation from Algebra Anal. 16, No. 3, 24-55 (2004).
Let \(X\) be a homogeneous Riemannian manifold, \(G\) the group of isometries of \(X\), \(dx\) the element of Riemannian measure on \(X\). We consider a collection \({\mathcal F}=\{E_i\}_{i=1}^k\) of compact subsets in \(X\) of positive measure. For every open set \({\mathcal U}\subset X\) such that every set \(G_i=\{g\in G: g^{-1}E_i\subset{\mathcal U}\}\), \(i=1,\dots, k\), is nonempty, the Pompeiu transformation \({\mathcal P}_{{\mathcal F};{\mathcal U}}\) maps the set \(C({\mathcal U})\) into the direct product \(C(G_1)\times\dots\times C(G_k)\) as follows: \({\mathcal P}_{{\mathcal F};{\mathcal U}}f=(f_1,\dots,f_k)\), where \(f_i(g)=\int_{g^{-1}E_i} f(x)\, dx\), \(g\in G_i\), \(i=1,\dots, k\). If \({\mathcal U}=X\) then \({\mathcal P}_{{\mathcal F};{\mathcal U}}\) is called the global Pompeiu transformation, and if \({\mathcal U}\neq X\) then \({\mathcal P}_{{\mathcal F};{\mathcal U}}\) is called the local Pompeiu transformation. The following problem is called the Pompeiu problem: Find out whether or not \({\mathcal P}_{{\mathcal F};{\mathcal U}}\) is injective and if not, find its kernel. Let \(B_r\) be the open ball of radius \(r\) and centered at the origin of \(X\), and \(\overline{B}_r\) the closure of \(B_r\). For the case when \({\mathcal U}=B_R\) and \({\mathcal F}=\{\overline{B}_{r_1}, \overline{B}_{r_2}\}\), the necessary and sufficient conditions for the injectivity of \({\mathcal P}_{{\mathcal F};{\mathcal U}}\) are called “local two-radii theorems”. In the paper under review the author obtains a local two-radii theorem in the case when \(X\) is the \(n\)-dimensional sphere \({\mathbb S}^n\).

MSC:

43A85 Harmonic analysis on homogeneous spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)
33C55 Spherical harmonics
Full Text: DOI

References:

[1] Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. · Zbl 0543.58001
[2] K. Berensteĭn and D. Struppa, Complex analysis and convolution equations, Current problems in mathematics. Fundamental directions, Vol. 54 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 5 – 111 (Russian).
[3] L. Zalcman, A bibliographic survey of the Pompeiu problem, Approximation by solutions of partial differential equations (Hanstholm, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 365, Kluwer Acad. Publ., Dordrecht, 1992, pp. 185 – 194. · Zbl 0830.26005
[4] Ivan Netuka and Jiří Veselý, Mean value property and harmonic functions, Classical and modern potential theory and applications (Chateau de Bonas, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430, Kluwer Acad. Publ., Dordrecht, 1994, pp. 359 – 398. · Zbl 0863.31012
[5] Lawrence Zalcman, Supplementary bibliography to: ”A bibliographic survey of the Pompeiu problem” [in Approximation by solutions of partial differential equations (Hanstholm, 1991), 185 – 194, Kluwer Acad. Publ., Dordrecht, 1992; MR1168719 (93e:26001)], Radon transforms and tomography (South Hadley, MA, 2000) Contemp. Math., vol. 278, Amer. Math. Soc., Providence, RI, 2001, pp. 69 – 74. · doi:10.1090/conm/278/04595
[6] L. Tchakaloff, Sur un problème de D. Pompéiu, Annuaire [Godišnik] Univ. Sofia. Fac. Phys.-Math. Livre 1. 40 (1944), 1 – 14 (Bulgarian, with French summary).
[7] Carlos A. Berenstein and Lawrence Zalcman, Pompeiu’s problem on symmetric spaces, Comment. Math. Helv. 55 (1980), no. 4, 593 – 621. · Zbl 0452.43012 · doi:10.1007/BF02566709
[8] Stephen A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), no. 3, 357 – 369. · Zbl 0439.35046 · doi:10.1512/iumj.1981.30.30028
[9] Carlos A. Berenstein and Mehrdad Shahshahani, Harmonic analysis and the Pompeiu problem, Amer. J. Math. 105 (1983), no. 5, 1217 – 1229. · Zbl 0522.43006 · doi:10.2307/2374339
[10] Peter Ungar, Freak theorem about functions on a sphere, J. London Math. Soc. 29 (1954), 100 – 103. · Zbl 0058.28403 · doi:10.1112/jlms/s1-29.1.100
[11] D. H. Armitage, The Pompeiu property for spherical polygons, Proc. Roy. Irish Acad. Sect. A 96 (1996), no. 1, 25 – 32. · Zbl 0983.31003
[12] Carlos A. Berenstein and Roger Gay, A local version of the two-circles theorem, Israel J. Math. 55 (1986), no. 3, 267 – 288. · Zbl 0624.31002 · doi:10.1007/BF02765026
[13] Mimoun El Harchaoui, Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques réel et complexe: cas des deux boules, J. Anal. Math. 67 (1995), 1 – 37 (French, with English summary). · Zbl 0865.32021 · doi:10.1007/BF02787785
[14] V. V. Volchkov, Spherical means theorems on symmetric spaces, Mat. Sb. 192 (2001), no. 9, 17 – 38 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 9-10, 1275 – 1296. · Zbl 1028.43011 · doi:10.1070/SM2001v192n09ABEH000593
[15] V. V. Volchkov, A local two-radius theorem on symmetric spaces, Dokl. Akad. Nauk 381 (2001), no. 6, 727 – 731 (Russian). · Zbl 1043.43005
[16] Vit. V. Volchkov, On functions with zero spherical means on a quaternion hyperbolic space, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 5, 3 – 32 (Russian, with Russian summary); English transl., Izv. Math. 66 (2002), no. 5, 875 – 903. · Zbl 1062.43020 · doi:10.1070/IM2002v066n05ABEH000401
[17] B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman.
[18] Rolf Schneider, Functions on a sphere with vanishing integrals over certain subspheres., J. Math. Anal. Appl. 26 (1969), 381 – 384. · Zbl 0167.32703 · doi:10.1016/0022-247X(69)90160-7
[19] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. · Zbl 0232.42007
[20] Специал\(^{\приме}\)ные функции и теория представлений групп, 2нд ед., ”Наука”, Мосцощ, 1991 (Руссиан, щитх Руссиан суммары). Н. Ја. Виленкин, Специал фунцтионс анд тхе тхеоры оф гроуп репресентатионс, Транслатед фром тхе Руссиан бы В. Н. Сингх. Транслатионс оф Матхематицал Монограпхс, Вол. 22, Америцан Матхематицал Социеты, Провиденце, Р. И., 1968.
[21] V. V. Volchkov, New mean-value theorems for solutions of the Helmholtz equation, Mat. Sb. 184 (1993), no. 7, 71 – 78 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 79 (1994), no. 2, 281 – 286. · Zbl 0821.35034 · doi:10.1070/SM1994v079n02ABEH003500
[22] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. · Zbl 0052.29502
[23] Асимптотические разложения интегралов. Том 1, Издат. ”Зинатне”, Рига, 1974 (Руссиан).
[24] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. · Zbl 0052.29502
[25] Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. · Zbl 0067.32101
[26] V. V. Volchkov, Uniqueness theorems for multiple lacunary trigonometric series, Mat. Zametki 51 (1992), no. 6, 27 – 31, 156 (Russian, with Russian summary); English transl., Math. Notes 51 (1992), no. 5-6, 550 – 552. · Zbl 0799.42011 · doi:10.1007/BF01263296
[27] Ѐлементы теории функций и функционал\(^{\приме}\)ного анализа, 6тх ед., ”Наука”, Мосцощ, 1989 (Руссиан). Щитх а супплемент, ”Банач алгебрас”, бы В. М. Тихомиров. А. Н. Колмогоров анд С. В. Фомин, Елеменц оф тхе тхеоры оф фунцтионс анд фунцтионал аналысис. Вол. 1. Метриц анд нормед спацес, Граылоцк Пресс, Рочестер, Н. Ы., 1957. Транслатед фром тхе фирст Руссиан едитион бы Лео Ф. Борон. А. Н. Колмогоров анд С. В. Фомин, Елеменц оф тхе тхеоры оф фунцтионс анд фунцтионал аналысис. Вол. 2: Меасуре. Тхе Лебесгуе интеграл. Хилберт спаце, Транслатед фром тхе фирст (1960) Руссиан ед. бы Хыман Камел анд Хораце Комм, Граылоцк Пресс, Албаны, Н.Ы., 1961. А. Н. Колмогоров анд С. В. Фомин, Меасуре, Лебесгуе интегралс, анд Хилберт спаце, Транслатед бы Натасча Артин Брунсщицк анд Алан Јеффреы, Ацадемиц Пресс, Нещ Ыорк-Лондон, 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.