×

Stochastic two-scale convergence and Young measures. (English) Zbl 1493.74101

The paper compares the notions of stochastic two-scale convergence in the mean introduced by A. Bourgeat et al. [J. Reine Angew. Math. 456, 19–51 (1994; Zbl 0808.60056)], the quenched notion of stochastic two-scale convergence introduced by V. V. Zhikov and A. L. Pyatniskii [Izv. Math. 70, No. 1, 19–67 (2006; Zbl 1113.35021); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 70, No. 1, 23–74 (2006)] and that of stochastic unfolding introduced by the authors [Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427–453 (2021; Zbl 1458.49013)]. Stochastic two-scale Young measures are used to compare the mean and quenched limits. The authors discuss two examples that can be analyzed via stochastic unfolding but cannot be treated by using quanched stochastic two-scale convergence.

MSC:

74Q99 Homogenization, determination of effective properties in solid mechanics
74B99 Elastic materials
74E05 Inhomogeneity in solid mechanics
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics

References:

[1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 1482-1518 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[2] K. T. Andrews; S. Wright, Stochastic homogenization of elliptic boundary-value problems with \(L^p\)-data, Asymptot. Anal., 17, 165-184 (1998) · Zbl 0954.35051
[3] T. Arbogast; J. Douglas; Jr; U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21, 823-836 (1990) · Zbl 0698.76106 · doi:10.1137/0521046
[4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim., 22, 570-598 (1984) · Zbl 0549.49005 · doi:10.1137/0322035
[5] A. Bourgeat, S. Luckhaus and A. Mikelić, A rigorous result for a double porosity model of immiscible two-phase flow, Comptes Rendusa l’Académie des Sciences, 320 (1994), 1289-1294.
[6] A. Bourgeat; A. Mikelić; S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math., 456, 19-51 (1994) · Zbl 0808.60056
[7] D. Cioranescu; A. Damlamian; R. De Arcangelis, Homogenization of nonlinear integrals via the periodic unfolding method, C. R. Math., 339, 77-82 (2004) · Zbl 1085.49016 · doi:10.1016/j.crma.2004.03.028
[8] D. Cioranescu; A. Damlamian; P. Donato; G. Griso; R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math. Anal., 44, 718-760 (2012) · Zbl 1250.49017 · doi:10.1137/100817942
[9] D. Cioranescu; A. Damlamian; G. Griso, Periodic unfolding and homogenization, C. R. Math., 335, 99-104 (2002) · Zbl 1001.49016 · doi:10.1016/S1631-073X(02)02429-9
[10] D. Cioranescu; A. Damlamian; G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, 1585-1620 (2008) · Zbl 1167.49013 · doi:10.1137/080713148
[11] G. Dal Maso; L. Modica, Nonlinear stochastic homogenization., Ann. Mat. Pura Appl., 144, 347-389 (1986) · Zbl 0607.49010 · doi:10.1007/BF01760826
[12] D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Series in Statistics. Springer-Verlag, New York, 1988. · Zbl 0657.60069
[13] J. Fischer; S. Neukamm, Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, Arch. Ration. Mech. Anal., 242, 343-452 (2021) · Zbl 1471.35024 · doi:10.1007/s00205-021-01686-9
[14] G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40, 269-286 (2004) · Zbl 1071.35015
[15] H. Hanke, Homogenization in gradient plasticity, Math. Models Methods Appl. Sci., 21, 1651-1684 (2011) · Zbl 1233.35017 · doi:10.1142/S0218202511005520
[16] M. Heida, An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72, 1-30 (2011) · Zbl 1230.60010 · doi:10.3233/ASY-2010-1022
[17] M. Heida, Stochastic homogenization of rate-independent systems and applications, Contin. Mech. Thermodyn., 29, 853-894 (2017) · Zbl 1375.74077 · doi:10.1007/s00161-017-0564-z
[18] M. Heida; S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, Asymptot. Anal., 112, 185-212 (2019) · Zbl 1418.35342 · doi:10.3233/ASY-181502
[19] M. Heida; S. Neukamm; M. Varga, Stochastic homogenization of \(\Lambda \)-convex gradient flows, Discrete Contin. Dyn. Syst. Ser. S, 14, 427-453 (2021) · Zbl 1458.49013 · doi:10.3934/dcdss.2020328
[20] H. Hoppe, Homogenization of Rapidly Oscillating Riemannian Manifolds, Dissertation, TU Dresden, 2020, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-743766.
[21] H. Hoppe, S. Neukamm and M. Schäffner, Stochastic homogenization of non-convex integral functionals with degenerate growth, (in preparation), 2021.
[22] V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. · Zbl 0838.35001
[23] S. M. Kozlov, Averaging of random operators, Mat. Sb., 109, 188-202 (1979) · Zbl 0415.60059
[24] M. Liero and S. Reichelt, Homogenization of Cahn-Hilliard-type equations via evolutionary \(\Gamma \)-convergence, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 6, 31 pp. · Zbl 1412.35024
[25] D. Lukkassen; G. Nguetseng; P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2, 35-86 (2002) · Zbl 1061.35015
[26] A. Mielke; S. Reichelt; M. Thomas, Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion, Netw. Heterog. Media, 9, 353-382 (2014) · Zbl 1304.35052 · doi:10.3934/nhm.2014.9.353
[27] A. Mielke; A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Anal., 39, 642-668 (2007) · Zbl 1185.35282 · doi:10.1137/060672790
[28] S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Technische Universität München, 2010.
[29] S. Neukamm; M. Schäffner; A. Schlömerkemper, Stochastic homogenization of nonconvex discrete energies with degenerate growth, SIAM J. Math. Anal., 49, 1761-1809 (2017) · Zbl 1362.74028 · doi:10.1137/16M1097705
[30] S. Neukamm; M. Varga, Stochastic unfolding and homogenization of spring network models, Multiscale Model. Simul., 16, 857-899 (2018) · Zbl 1392.49014 · doi:10.1137/17M1141230
[31] S. Neukamm; M. Varga; M. Waurick, Two-scale homogenization of abstract linear time-dependent PDEs, Asymptot. Anal., 125, 247-287 (2021) · Zbl 1510.35322
[32] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, 608-623 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[33] G. C. Papanicolaou; S. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields, 1, 835-873 (1979) · Zbl 0499.60059
[34] M. Varga, Stochastic Unfolding and Homogenization of Evolutionary Gradient Systems, Dissertation, TU Dresden, 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-349342.
[35] A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12, 371-397 (2006) · Zbl 1110.35009 · doi:10.1051/cocv:2006012
[36] C. Vogt, A homogenization theorem leading to a Volterra-integrodifferential equation for permeation chromotography, Preprint No 155, SFB 123, Heidelberg, 1982.
[37] V. V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sb. Math., 191, 973-1014 (2000) · Zbl 0969.35048 · doi:10.1070/SM2000v191n07ABEH000491
[38] V. V. Zhikov; A. Pyatnitskii, Homogenization of random singular structures and random measures, Izv. Math., 70, 19-67 (2006) · Zbl 1113.35021 · doi:10.1070/IM2006v070n01ABEH002302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.