×

Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation. (English) Zbl 1210.11083

Dirichlet found a simultaneous approximation result of the following shape. Given reals \(\alpha_1,\dots,\alpha_n\) and \(N\geq1\), there are integers \(x_1, \dots, x_n\), \(y\) (not all zero) with \(|\alpha_1x_1+\cdots+\alpha_nx_n+y|< N^{-n}\), and with \(\max(|x_1|,\dots,|x_n|)\leq N\). Dually, for each \(N\geq1\), there are integers \(x_1,\dots,x_n\), \(y\) (not all zero) with \({\max(|\alpha_1y-x_1|,\dots,|\alpha_ny-x_n|)}< N^{-1}\), and with \(|y|\leq N^n\). H. Davenport and W. M. Schmidt [Acta Arith. 16, 413–424 (1970; Zbl 0201.05501)] proved that each of these statements is false for almost every \((\alpha_1,\dots,\alpha_n)\) if the right-hand sides of the inequalities are multiplied by any number \(\mu < 1\). This remarkable sharpness – that Dirichlet’s theorems ‘cannot be \(\mu\)-improved’ for almost all points in \(\mathbb R^n\) – has several generalizations and extensions due to Baker, Dodson, Rynne, Vickers, Bugeaud, Kleinbock and Weiss. In particular, D. Kleinbock and B. Weiss [J. Mod. Dyn. 2, No. 1, 43–62 (2008; Zbl 1143.11022)] expressed the problem using the language of flows on homogeneous spaces and exploited results of S. G. Dani [J. Reine Angew. Math. 359, 55–89 (1985; Zbl 0578.22012); correction, J. Reine Angew. Math. 360, 214 (1985; Zbl 0578.22013)] and of D. Y. Kleinbock and G. A. Margulis [Ann. Math. (2) 148, No. 1, 339–360 (1998; Zbl 0922.11061)]. They proved that the Dirichlet theorems cannot be \(\mu\)-improved for almost all points lying on any nondegenerate curve in \(\mathbb R^n\) for some small \(\mu < 1\).
In this paper, Ratner’s theorem on ergodic properties of unipotent flows on homogeneous spaces is used to prove generalizations of the following form. Let \(\phi:[a,b] \rightarrow\mathbb R^n\) be an analytic curve whose image is not contained in any proper affine subspace. Then Dirichlet’s theorems cannot be improved (for any \(\mu\in(0,1)\)) for \(\phi(s)\) for almost all \(s\in [a,b]\). This is deduced from a more general result: Let \(\Lambda\) be a lattice in a Lie group \(L\), and let \(\rho:\text{SL}(n+1,\mathbb R) \rightarrow L\) be a continuous homomorphism; let \(x_0 \in L/\Lambda\) have the property that its orbit \(Hx_0\) under a minimal closed subgroup \(H\) of \(L\) containing the image of \(\rho\) is closed, and admits a finite \(H\)-invariant measure \(\mu_H\). Denote by \(a_t\) the diagonal matrix \(\text{diag}(e^{nt},e^{-t},e^{-t}, \dots, e^{-t})\) in \(\text{SL}(n+1,\mathbb R)\) for and by \(u(x_1, \dots,x_n)\) the unipotent matrix with first row \(1,x_1, \dots, x_n\) (and other rows as in the identity matrix). Then, for any bounded continuous \(f\) on \(L/\Lambda\), \[ \lim_{t \rightarrow \infty} \frac{1}{|b-a|} \int_a^b f(\rho(a_t u(\phi(s)))x_0)\,ds = \int_{Hx_0} f \,d \mu_H. \] An intermediate result (Proposition 4.2) describes how the linear actions of various copies of \(\text{SL}(2,\mathbb R)\) (whose action has been studied by the author [Duke Math. J. 148, No. 2, 281–304 (2009; Zbl 1171.37004)]) inside \({\text{SL}(n+1,\mathbb R)}\) interact.

MSC:

11J83 Metric theory
22E40 Discrete subgroups of Lie groups
43A85 Harmonic analysis on homogeneous spaces

References:

[1] Baker, R.C.: Dirichlet’s theorem on diophantine approximation. Math. Proc. Camb. Philos. Soc. 83(1), 37–59 (1978) · Zbl 0371.10025 · doi:10.1017/S030500410005427X
[2] Bugeaud, Y.: Approximation by algebraic integers and Hausdorff dimension. J. Lond. Math. Soc. (2) 65(3), 547–559 (2002) · Zbl 1020.11049 · doi:10.1112/S0024610702003137
[3] Dani, S.G.: Divergent trajectories of flows on homogeneous spaces and diophantine approximation. J. Reine Angew. Math. 359, 55–89 (1985) · Zbl 0578.22012 · doi:10.1515/crll.1985.359.55
[4] Dani, S.G., Margulis, G.A.: Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces. Proc. Indian Acad. Sci. Math. Sci. 101(1), 1–17 (1991) · Zbl 0731.22008 · doi:10.1007/BF02872005
[5] Dani, S.G., Margulis, G.A.: Limit distributions of orbits of unipotent flows and values of quadratic forms. In: I.M. Gelfand Seminar, pp. 91–137. Am. Math. Soc., Providence (1993) · Zbl 0814.22003
[6] Davenport, H., Schmidt, W.M.: Dirichlet’s theorem on diophantine approximation. II. Acta Arith. 16, 413–424 (1969/1970) · Zbl 0201.05501
[7] Davenport, H., Schmidt, W.M.: Dirichlet’s Theorem on Diophantine Approximation, INDAM, Rome, 1968/1969. Symposia Mathematica, vol. IV, pp. 113–132. Academic Press, London (1970)
[8] Dodson, M.M., Rynne, B.P., Vickers, J.A.: Dirichlet’s theorem and diophantine approximation on manifolds. J. Number Theory 36(1), 85–88 (1990) · Zbl 0716.11029 · doi:10.1016/0022-314X(90)90006-D
[9] Duke, W., Rudnick, Z., Sarnak, P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71(1), 143–179 (1993) · Zbl 0798.11024 · doi:10.1215/S0012-7094-93-07107-4
[10] Eskin, A., McMullen, C.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1), 181–209 (1993) · Zbl 0798.11025 · doi:10.1215/S0012-7094-93-07108-6
[11] Eskin, A., Mozes, S., Shah, N.: Unipotent flows and counting lattice points on homogeneous varieties. Ann. Math. (2) 143(2), 253–299 (1996) · Zbl 0852.11054 · doi:10.2307/2118644
[12] Gorodnik, A.: Open problems in dynamics and related fields. J. Mod. Dyn. 1(1), 1–35 (2007) · Zbl 1118.37002
[13] Kleinbock, D.Y., Margulis, G.A.: Flows on homogeneous spaces and diophantine approximation on manifolds. Ann. Math. (2) 148(1), 339–360 (1998) · Zbl 0922.11061 · doi:10.2307/120997
[14] Kleinbock, D.Y., Margulis, G.A.: On effective equidistribution of expanding translates of certain orbits in the space of lattices. arXiv:math/0702433 · Zbl 1262.37005
[15] Kleinbock, D., Weiss, B.: Dirichlet’s theorem on diophantine approximation and homogeneous flows. J. Mod. Dyn. (JMD) 2(1), 43–62 (2008). arXiv:math/0612171 · Zbl 1143.11022
[16] Mozes, S., Shah, N.A.: On the space of ergodic invariant measures of unipotent flows. Ergod. Theory Dyn. Syst. 15(1), 149–159 (1995) · Zbl 0818.58028
[17] Ratner, M.: On Raghunathan’s measure conjecture. Ann. Math. (2) 134(3), 545–607 (1991) · Zbl 0763.28012 · doi:10.2307/2944357
[18] Ratner, M.: Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63(1), 235–280 (1991) · Zbl 0733.22007 · doi:10.1215/S0012-7094-91-06311-8
[19] Shah, N.A.: Uniformly distributed orbits of certain flows on homogeneous spaces. Math. Ann. 289(2), 315–334 (1991) · doi:10.1007/BF01446574
[20] Shah, N.A.: Limit distributions of expanding translates of certain orbits on homogeneous spaces. Proc. Indian Acad. Sci. (Math. Sci.) 106, 105–125 (1996) · Zbl 0864.22004 · doi:10.1007/BF02837164
[21] Shah, N.A.: Limiting distributions of curves under geodesic flow on hyperbolic manifold. Duke Math. J. 148(2), (2009). arXiv:0708.4093 · Zbl 1171.37003
[22] Shah, N.A.: Asymptotic evolution of smooth curves under geodesic flow on hyperbolic manifolds. Duke Math. J. 148(2), (2009). arXiv:0804.3749 · Zbl 1171.37004
[23] Shah, N.A.: Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms. 28 pages. arXiv:0804.1424
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.