×

Constructing L-fuzzy concept lattices without fuzzy Galois closure operation. (English) Zbl 1380.68349

Summary: Improving construction efficiency of fuzzy concept lattices remains one of the important issues in the field of fuzzy formal concept analysis. Building L-fuzzy concept lattice is usually based on the closure operation of the fuzzy Galois connection, and each closure operation needs to scan the fuzzy concept context twice. This becomes a significant computing overhead, especially when the fuzzy formal context is large. We propose a batch-mode algorithm for directly constructing fuzzy concept lattices based on union and intersection operations of the fuzzy set that scans the fuzzy formal context once only. Experimental results show that it improves the construction efficiency of the complete fuzzy concept lattice, especially for large fuzzy formal contexts with small truth sets.

MSC:

68T30 Knowledge representation
68W40 Analysis of algorithms
Full Text: DOI

References:

[1] Belohlavek, R.; De Baets, B.; Outrata, J.; Vychodil, V., Computing the lattice of all fixpoints of a fuzzy closure operator, IEEE Trans. Fuzzy Syst., 18, 3, 546-557 (2010)
[2] Belohlavek, R., Algorithms for fuzzy concept lattices, (Proc. Fourth Int. Conf. on Recent Advances in Soft Computing. Proc. Fourth Int. Conf. on Recent Advances in Soft Computing, Nottingham, United Kingdom (2002)), 200-205
[3] Belohlavek, R.; Vychodil, V., What is a fuzzy concept lattice, (Proceedings of the Conference on Concept Lattices and Their Applications (2005)), 34C-45
[4] Belohlavek, R., What is a fuzzy concept lattice? II, (Kuznetsov, S. O., Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Proceedings of 13th International Conference. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Proceedings of 13th International Conference, RSFDGrC 2011, Moscow, Russia, June 25-27. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Proceedings of 13th International Conference. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Proceedings of 13th International Conference, RSFDGrC 2011, Moscow, Russia, June 25-27, LNCS, vol. 6743 (2011), Springer: Springer Berlin, Heidelberg), 19-26 · Zbl 1217.68012
[5] Belohlavek, R.; De Baets, B.; Konecny, J., Zoom-in/zoom-out algorithms for FCA with attribute granularity, (Computer and Information Sciences II (2012), Springer), 549-555
[6] Belohlavek, R.; Vychodil, V., Formal concept analysis and linguistic hedges, Int. J. Gen. Syst., 41, 5, 503-532 (2012) · Zbl 1277.93045
[7] Belohlavek, R.; Vychodil, V., Attribute dependencies for data with grades, I, Int. J. Gen. Syst., 45, 7-8, 864-888 (2016) · Zbl 1404.68158
[8] Belohlavek, R.; Vychodil, V., Attribute dependencies for data with grades, II, Int. J. Gen. Syst., 46, 1, 66-92 (2017)
[9] Belohlavek, R.; Sklenar, V.; Zacpal, J., Crisply generated fuzzy concepts, (Ganter, B.; Godin, R., Formal Concept Analysis. Formal Concept Analysis, LNCS, vol. 3403 (2005), Springer: Springer Berlin, Heidelberg), 269-284 · Zbl 1078.68142
[10] Belohlavek, R.; Dvorak, J.; Outrata, J., Fast factorization by similarity in formal concept analysis of data with fuzzy attributes, J. Comput. Syst. Sci., 73, 6, 1012-1022 (2007) · Zbl 1121.68112
[11] Belohlavek, R.; Outrata, J.; Vychodil, V., Direct factorization by similarity of fuzzy concept lattices by factorization of input data, (Yahia, S.; Nguifo, E.; Belohlavek, R., Concept Lattices and Their Applications. Concept Lattices and Their Applications, LNCS, vol. 4923 (2008), Springer: Springer Berlin, Heidelberg), 68-79 · Zbl 1133.68442
[12] Belohlavek, R.; Outrata, J.; Vychodil, V., Fast factorization by similarity of fuzzy concept lattices with hedges, Int. J. Found. Comput. Sci., 19, 2, 255-269 (2008) · Zbl 1149.68428
[13] Belohlavek, R., Fuzzy Galois connections, Math. Log. Q., 45, 4, 497-504 (1999) · Zbl 0938.03079
[14] Belohlavek, R., Reduction and a simple proof of characterization of fuzzy concept lattices, Fundam. Inform., 46, 4, 277-285 (2001) · Zbl 1016.06008
[15] Belohlavek, R., Fuzzy closure operators, J. Math. Anal. Appl., 262, 2, 473-489 (2001) · Zbl 0989.54006
[16] Belohlavek, R., Fuzzy Relational Systems: Foundations and Principles (2002), Kluwer Academic/Plenum Publishers: Kluwer Academic/Plenum Publishers New York, 233 Spring Street · Zbl 1067.03059
[17] Belohlavek, R.; Konecny, J., Bases of closure system over residuated lattices, J. Comput. Syst. Sci., 82, 2, 357-365 (2016) · Zbl 1327.03047
[18] Boffa, S.; Maio, C. D.; Nola, A. D., Unifying fuzzy concept lattice construction methods, (2016 IEEE International Conference on Fuzzy Systems (2016), FUZ-IEEE), 209-216
[19] Burusco, A.; Fuentes-Gonzalez, R., Concept lattices defined from implication operators, Fuzzy Sets Syst., 114, 3, 431-436 (2000) · Zbl 0971.06010
[20] Choi, V., Faster algorithms for constructing a concept (Galois) lattice, (Proceedings of the conference on Concept Lattices and Their Applications (2006)), 1-15, URL
[21] Cross, V.; Kandasamy, M.; Yi, W., Comparing two approaches to creating fuzzy concept lattices, (2011 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS) (2011), IEEE), 1-6
[22] Farach-Colton, M.; Huang, Y., A linear delay algorithm for building concept lattices, (Ferragina, P.; Landau, G., Combinatorial Pattern Matching. Combinatorial Pattern Matching, LNCS, vol. 5029 (2008), Springer: Springer Berlin, Heidelberg), 204-216 · Zbl 1143.68602
[23] Ganter, B.; Wille, R., Formal Concept Analysis: Mathematical Foundations (1999), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0909.06001
[24] Godin, R.; Missaoui, R.; Alaoui, H., Incremental concept formation algorithms based on galois (concept) lattices, Comput. Intell., 11, 2, 246-267 (1995)
[25] Krajci, S., A generalized concept lattice, Log. J. IGPL, 13, 5, 543-550 (2005) · Zbl 1088.06005
[26] Kuznetsov, S. O.; Obiedkov, S., Comparing performance of algorithms for generating concept lattices, J. Exp. Theor. Artif. Intell., 14, 189-216 (2002) · Zbl 1024.68020
[27] Li, M. Z.; Wang, G. Y., Knowledge reduction in crisply generated fuzzy concept lattices, Fundamenta, 142, 1-4, 307-335 (2015) · Zbl 1346.68193
[28] Li, J. H.; Mei, C.; Lv, Y., Knowledge reduction in real decision formal contexts, Inf. Sci., 189, 15, 191-207 (2012) · Zbl 1247.68280
[29] Lindig, C., Fast concept analysis, (Working with Conceptual Structures C: Contributions to ICCS 2000 (2000)), 152-161
[30] Osicka, P., Algorithms for Computation of Concept Trilattice of Triadic Fuzzy Context, 221-230 (2012), Springer: Springer Berlin, Heidelberg · Zbl 1252.68287
[31] Shao, M.; Leung, Y.; Wang, X., Granular reducts of formal fuzzy contexts, Knowl.-Based Syst., 114, 156-166 (2016)
[32] Singh, P. K.; Kumar, C. A., Concepts reduction in formal concept analysis with fuzzy setting using Shannon entropy, Int. J. Machine Learn. Cybern., 1-11 (2014)
[33] Tho, Q. T.; Hui, S. C.; Fong, A. C.M., Automatic fuzzy ontology generation for the semantic web, IEEE Trans. Knowl. Data Eng., 18, 6, 842-856 (2006)
[34] Valtchev, P.; Missaoui, R., Building concept (Galois) lattices from parts: generalizing the incremental methods, (Delugach, H.; Stumme, G., Conceptual Structures: Broadening the Base. Conceptual Structures: Broadening the Base, LNCS, vol. 2120 (2001), Springer: Springer Berlin, Heidelberg), 290-303 · Zbl 0998.68172
[35] Valtchev, P.; Lebrun, M. R., A partition based approach towards constructing concept lattices, Discrete Math., 256, 3, 801-829 (2002) · Zbl 1013.06007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.