×

Measurement-device-independent quantum dialogue based on entanglement swapping and phase encoding. (English) Zbl 07832340

Summary: Quantum dialogue (QD) can implement the bidirectional quantum secure direct communication through quantum channels. In this paper, we propose a measurement-device-independent (MDI) QD protocol based on the entanglement swapping and phase-encoding technology. Our protocol can resist all possible attacks from imperfect measurement devices and is theoretically secure. In our protocol, a round of communication consumes six entangled photon pairs and the two communication parties can exchange two bits of messages. Compared with existing MDI-QD protocols, our protocol does not require the communication parties to share keys in advance. Meanwhile, it adopts the partial Bell state measurement in linear optics, which is feasible under current condition. Based on above features, our MDI-QD protocol has application potential in the field of quantum communication.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations
94A60 Cryptography
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computed Systems and Signal Processing, pp. 175-179 (1984)
[2] Ekert, AK, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 661 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 74, 145-195 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[4] Ma, XF; Zeng, P.; Zhou, HY, Phase-matching quantum key distribution, Phys. Rev. X, 8, 031043 (2018)
[5] Xu, FH; Ma, XF; Zhang, Q.; Lo, HK; Pan, JW, Secure quantum key distribution with realistic devices, Rev. Mod. Phys., 92, 025002 (2020) · doi:10.1103/RevModPhys.92.025002
[6] Chen, YA; Zhang, Q.; Chen, TY, An integrated space-to-ground quantum communication network over 4,600 kilometres, Nature, 589, 214-219 (2021) · doi:10.1038/s41586-020-03093-8
[7] Wang, S.; Yin, ZQ; He, DY, Twin-field quantum key distribution over 830 km fibre, Nat. Photon., 16, 154-161 (2022) · doi:10.1038/s41566-021-00928-2
[8] Liu, B.; Xia, S.; Xiao, D.; Huang, W.; Xu, BJ; Li, Y., Decoy-state method for quantum-key-distribution-based quantum private query, Sci. China Phys. Mech. Astron., 65, 240312 (2022) · doi:10.1007/s11433-021-1843-7
[9] Zhao, W.; Shi, RH; Ruan, XC; Guo, Y.; Mao, YY; Feng, YY, Monte Carlo-based security analysis for multi-mode continuous-variable quantum key distribution over underwater channel, Quant. Inform. Process., 21, 186 (2022) · doi:10.1007/s11128-022-03533-6
[10] Zhou, C.; Wang, XY; Zhang, ZG; Yu, S.; Chen, ZY; Guo, H., Rate compatible reconciliation for continuous-variable quantum key distribution using raptor-like LDPC codes, Sci. China Phys. Mech. Astron., 64, 260311 (2022) · doi:10.1007/s11433-021-1688-4
[11] Xie, YM; Lu, YS; Weng, CX; Cao, XY; Jia, ZY; Bao, Y.; Wang, Y.; Fu, Y.; Yin, HL; Chen, ZB, Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference, PRX Quant., 3, 020315 (2022) · doi:10.1103/PRXQuantum.3.020315
[12] Long, GL; Liu, XS, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A, 65, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[13] Deng, FG; Long, GL; Liu, XS, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A, 68, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[14] Deng, FG; Long, GL, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 69, 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[15] Wang, C.; Deng, FG; Li, YS, Quantum secure direct communication with high-dimension quantum superdense coding, Phys. Rev. A, 71, 044305 (2005) · doi:10.1103/PhysRevA.71.044305
[16] Wu, JW; Lin, ZS; Yin, LG; Long, GL, Security of quantum secure direct communication based on Wyners wiretap channel theory, Quant. Eng., 1, e26 (2019)
[17] Li, T.; Long, GL, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys., 22, 063017 (2020) · doi:10.1088/1367-2630/ab8ab5
[18] Zhou, L.; Sheng, YB; Long, GL, Device-independent quantum secure direct communication against collective attacks, Sci. Bull., 65, 12-20 (2020) · doi:10.1016/j.scib.2019.10.025
[19] Zhou, ZR; Sheng, YB; Niu, PH; Yin, LG; Long, GL, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 63, 230362 (2020) · doi:10.1007/s11433-019-1450-8
[20] Li, T.; Gao, ZK; Li, ZH, Measurement-device-independent quantum secure direct communication: direct quantum communication with imperfect measurement device and untrusted operator, EPL, 131, 60001 (2020) · doi:10.1209/0295-5075/131/60001
[21] Sun, Z.; Song, LY; Huang, Q.; Yin, LG; Long, GL; Lu, JH; Hanzo, L., Toward practical quantum secure direct communication: a quantum-momery-free protocol and code design, IEEE Tran. Commun., 68, 5778-5792 (2020) · doi:10.1109/TCOMM.2020.3006201
[22] Long, GL; Zhang, HR, Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull., 66, 1267-1269 (2020) · doi:10.1016/j.scib.2021.04.016
[23] Sheng, YB; Zhou, L.; Long, GL, One-step quantum secure direct communication, Sci. Bull., 67, 367-374 (2022) · doi:10.1016/j.scib.2021.11.002
[24] Zhou, L.; Sheng, YB, One-step device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron., 65, 250311 (2022) · doi:10.1007/s11433-021-1863-9
[25] Ying, JW; Zhou, L.; Zhong, W.; Sheng, YB, Measurement-device-independent one-step quantum secure direct communication, Chin. Phys. B, 31, 120303 (2022) · doi:10.1088/1674-1056/ac8f37
[26] Liu, X.; Luo, D.; Lin, GS, Fiber-based quantum secure direct communication without active polarization compensation, Sci. China Phys. Mech. Astron., 65, 120311 (2022) · doi:10.1007/s11433-022-1976-0
[27] Wang, P.; Chen, XH; Sun, ZW, Semi-quantum secure direct communication against collective-dephasing noise, Quant. Inform. Process., 21, 352 (2022) · Zbl 07734726 · doi:10.1007/s11128-022-03702-7
[28] Yang, YF; Duan, LZ; Qiu, TR; Xie, XM; Duan, WY, Multi-party semi-quantum secure direct communication using Greenberger-Horne-Zeilinger states, Quant. Inform. Process., 21, 324 (2022) · Zbl 1508.81800 · doi:10.1007/s11128-022-03671-x
[29] Zhou, L.; Xu, BW; Zhong, W.; Sheng, YB, Device-independent quantum secure direct communication with single-photon sources, Phys. Rev. Appl., 19, 014036 (2023) · doi:10.1103/PhysRevApplied.19.014036
[30] Hong, YP; Zhou, L.; Zhong, W.; Sheng, YB, Measurement-device-independent three-party quantum secure direct communication, Quant. Inform. Process., 22, 111 (2023) · Zbl 1509.81376 · doi:10.1007/s11128-023-03853-1
[31] Liang, KX; Cao, ZW; Chen, XL; Wang, L.; Chai, G.; Peng, JY, A quantum secure direct communication scheme based on intermediate-basis, Front. Phys., 18, 51301 (2023) · doi:10.1007/s11467-023-1284-4
[32] Yang, CW; Lin, J.; Wang, KL; Tsai, CW, Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state, Quant. Inform. Process., 22, 196 (2023) · Zbl 07691202 · doi:10.1007/s11128-023-03956-9
[33] Cao, ZW; Lu, Y.; Chai, G.; Yu, H.; Liang, KX; Wang, L., Realization of quantum secure direct communication with continuous variable, Research, 6, 193 (2023) · doi:10.34133/research.0193
[34] Hu, JY; Yu, B.; Jing, MY; Xiao, LT; Jia, ST; Qin, GQ; Long, GL, Experimental quantum secure direct communication with single photons, Light Sci. Appl., 5, e16144 (2016) · doi:10.1038/lsa.2016.144
[35] Zhang, W.; Ding, DS; Sheng, YB; Zhou, L.; Shi, BS; Guo, GC, Quantum secure direct communication with quantum memory, Phys. Rev. Lett., 118, 220501 (2017) · doi:10.1103/PhysRevLett.118.220501
[36] Zhu, F.; Zhang, W.; Sheng, YB; Huang, YD, Experimental long-distance quantum secure direct communication, Sci. Bull., 62, 1519-1524 (2017) · doi:10.1016/j.scib.2017.10.023
[37] Pan, D.; Lin, ZS; Wu, JW; Zhang, HR; Sun, Z.; Ruan, D.; Yin, LG; Long, GL, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res., 8, 1522-1531 (2020) · doi:10.1364/PRJ.388790
[38] Qi, ZT; Li, YH; Huang, YW; Feng, J.; Zheng, YL; Chen, XF, A 15-user quantum secure direct communication network, Light Sci. Appl., 10, 183 (2021) · doi:10.1038/s41377-021-00634-2
[39] Zhang, HR; Sun, Z.; Qi, RY; Yin, LG; Long, GL; Lu, JH, Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum, Light Sci. Appl., 11, 83 (2022) · doi:10.1038/s41377-022-00769-w
[40] Long, GL; Pan, D.; Sheng, YB; Xue, QK; Lu, JH; Hanzo, L., An evolutionary pathway for the quantum internet relying on secure classical repeaters, IEEE Netw., 36, 82-88 (2022) · doi:10.1109/MNET.108.2100375
[41] Nguyen, BA, Quantum dialogue, Phys. Lett. A, 328, 6-10 (2004) · Zbl 1134.81338 · doi:10.1016/j.physleta.2004.06.009
[42] Man, ZX; Zhang, ZJ; Li, Y., Quantum dialogue revisited, Chin. Phys. Lett., 22, 22-24 (2005) · doi:10.1088/0256-307X/22/1/007
[43] Xia, Y.; Fu, CB; Zhang, S.; Hong, SK; Yeon, KH; Um, CI, Quantum dialogue by using the GHZ state, J. Korean Phys. Sci., 48, 24-27 (2006)
[44] Yang, YG; Wen, QY, Quasi-secure quantum dialogue using single photons, Sci. China Phys. Mech. Astron., 50, 558-562 (2007) · doi:10.1007/s11433-007-0057-3
[45] Shi, GF; Xi, XQ; Tian, XL, Bidirectional quantum secure communication based on a shared private Bell state, Opt. Commun., 282, 2460-2463 (2009) · doi:10.1016/j.optcom.2009.02.062
[46] Gao, G., Two quantum dialogue protocols without information leakage, Opt. Commun., 283, 2288-2293 (2010) · doi:10.1016/j.optcom.2010.01.022
[47] Shi, GF; Xi, XQ; Hu, ML, Quantum secure dialogue by using single photons, Opt. Commun., 283, 1984-1986 (2010) · doi:10.1016/j.optcom.2010.01.007
[48] Zhou, NR; Li, JF; Yu, ZB; Gong, LH; Farouk, A., New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states, Quant. Inform. Process., 16, 4 (2017) · Zbl 1373.81193 · doi:10.1007/s11128-016-1461-2
[49] Qi, B.; Fung, CHF; Lo, HK; Ma, XF, Time-shift attack in practical quantum cryptosystems, Quant. Inf. Comput., 7, 73-82 (2007) · Zbl 1152.81801
[50] Jain, N.; Wittmann, C.; Lydersen, L.; Wiechers, C.; Elser, D.; Marquardt, C.; Makarov, V.; Leuchs, G., Device calibration impacts security of quantum key distribution, Phys. Rev. Lett., 107, 110501 (2011) · doi:10.1103/PhysRevLett.107.110501
[51] Makarov, V.; Anisimov, A.; Skaar, J., Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A, 74, 022313 (2006) · doi:10.1103/PhysRevA.74.022313
[52] Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V., Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photon., 4, 686-689 (2010) · doi:10.1038/nphoton.2010.214
[53] Makarov, V., Controlling passively quenched single photon detectors by bright light, New J. Phys., 11, 065003 (2009) · doi:10.1088/1367-2630/11/6/065003
[54] Lo, HK; Curty, M.; Qi, B., Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108, 130503 (2012) · doi:10.1103/PhysRevLett.108.130503
[55] Tamaki, K.; Lo, HK, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw, Phys. Rev. A, 85, 042307 (2012) · doi:10.1103/PhysRevA.85.042307
[56] Xu, FH; Curty, M.; Qi, B.; Lo, HK, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys., 15, 113007 (2013) · Zbl 1451.94034 · doi:10.1088/1367-2630/15/11/113007
[57] Maitra, A., Measurement device-independent quantum dialogue, Quant. Inform. Process., 16, 305 (2017) · Zbl 1382.81075 · doi:10.1007/s11128-017-1757-x
[58] Das, N.; Paul, G., Two efficient measurement device independent quantum dialogue protocols, Int. J. Quant. Inform., 18, 2050038 (2020) · Zbl 1461.81016 · doi:10.1142/S0219749920500380
[59] Basak, J.; Maitra, A.; Maitra, S., Improved and practical proposal for measurement device independent quantum dialogue, Quant. Inform. Process., 20, 361 (2021) · Zbl 1508.81276 · doi:10.1007/s11128-021-03271-1
[60] Shi, GF, Measurement-device-independent quantum dialogue, Chin. Phys. B, 30, 100303 (2021) · doi:10.1088/1674-1056/ac140a
[61] Han, KQ; Zhou, L.; Zhong, W.; Sheng, YB, Measurement-device-independent quantum dialogue based on hyperentanglement, Quant. Inform. Process., 20, 280 (2021) · Zbl 1509.81161 · doi:10.1007/s11128-021-03213-x
[62] Sheng, YB; Deng, FG; Long, GL, Complete hyperentangled-bell-state analysis for quantum communication, Phys. Rev. A, 82, 032318 (2010) · doi:10.1103/PhysRevA.82.032318
[63] Li, XH; Ghose, S., Hyperentangled bell-state analysis and hyperdense coding assisted by auxiliary entanglement, Phys. Rev. A, 96, 020303 (2017) · doi:10.1103/PhysRevA.96.020303
[64] Ren, BC; Wei, HR; Hua, M.; Li, T.; Deng, FG, Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express, 20, 24664-24677 (2012) · doi:10.1364/OE.20.024664
[65] Gao, F.; Guo, FZ; Wen, QY, Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication, Sci. China Phys. Mech. Astron., 51, 559-566 (2008) · doi:10.1007/s11433-008-0065-y
[66] Hu, XM; Huang, CX; Sheng, YB, Long-distance entanglement purification for quantum communication, Phys. Rev. Lett., 126, 010503 (2021) · doi:10.1103/PhysRevLett.126.010503
[67] Wang, S.; He, DY; Yin, ZQ; Lu, FY; Cui, CH; Chen, W.; Zhou, Z.; Guo, GC; Han, ZF, Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system, Phys. Rev. X, 9, 021046 (2019)
[68] Minder, M.; Pittaluga, M.; Roberts, GL; Lucamarini, M.; Dynes, JF; Yuan, ZL; Shields, AJ, Experimental quantum key distribution beyond the repeaterless secret key capacity, Nat. Photon., 13, 334-338 (2019) · doi:10.1038/s41566-019-0377-7
[69] Stanley, M.; Gui, Y.; Unnikrishnan, D.; Hall, SRG; Fatadin, I., Recent progress in quantum key distribution network deployments and standards, J. Phys. Conf. Ser., 2416, 012001 (2022) · doi:10.1088/1742-6596/2416/1/012001
[70] Clivati, C.; Aiello, R.; Bianco, G., Common-clock very long baseline interferometry using a coherent optical fiber link, Optica, 7, 1031-1037 (2020) · doi:10.1364/OPTICA.393356
[71] Clivati, C.; Meda, A.; Donadello, S., Coherent phase transfer for real-world twin-field quantum key distribution, Nat. Commun., 13, 157 (2022) · doi:10.1038/s41467-021-27808-1
[72] Zhong, T.; Kindem, JM; Bartholomew, JG; Rochman, J.; Craiciu, I.; Miyazono, E.; Bettinelli, M.; Cavalli, E.; Verma, V.; Nam, SW, Nanophotonic rare-earth quantum memory with optically controlled retrieval, Science, 357, 1392-1395 (2017) · doi:10.1126/science.aan5959
[73] Wang, YF; Li, JF; Zhang, SC; Su, KY; Zhou, YR; Liao, KY; Du, SW; Yan, H.; Zhu, SL, Efficient quantum memory for single-photon polarization qubits, Nat. Photon., 13, 346-351 (2019) · doi:10.1038/s41566-019-0368-8
[74] Ma, Y.; Ma, YZ; Zhou, ZQ; Li, CF; Guo, GC, One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun., 12, 2381 (2021) · doi:10.1038/s41467-021-22706-y
[75] Zhang, XY; Zhang, B.; Wei, SH; Li, H.; Liao, JY; Li, C.; Deng, GW; Wang, Y.; Song, HZ; You, LX, Telecom-band-integrated multimode photonic quantum memory, Sci. Adv., 9, adf4587 (2023) · doi:10.1126/sciadv.adf4587
[76] Kaneda, F.; Xu, F.; Chapman, J., Quantum-memory-assisted multi-photon generation for efficient quantum information processing, Optica, 4, 1034-1037 (2017) · doi:10.1364/OPTICA.4.001034
[77] Kaneda, F.; Kwiat, PG, High-efficiency single-photon generation via large-scale active time multiplexing, Sci. Adv., 5, eaaw8586 (2019) · doi:10.1126/sciadv.aaw8586
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.