×

Wave-passage effect of earthquake loadings on long structures. (English) Zbl 1359.74307

Summary: The wave-passage effect of earthquake loadings on long-span structures is studied through use of a multiply-supported single-degree-of-freedom (SDOF) system excited by traveling seismic ground motions. The absolute acceleration response of the SDOF system is represented in the analytical form in the time domain. The frequency-domain analysis results indicate that the wave-passage effect may reduce the absolute acceleration response and the earthquake loading acting on the multiply-supported SDOF system. Further, for different velocities of wave-passage, the response spectra are calculated to represent the reduction of the maximum earthquake loading on the long-span system caused by the wave-passage effect. The computation results of the response spectra indicate that the reduction of the maximum earthquake loading is fluctuant, but has a general tendency to decrease with the increase in the apparent wave velocity and the structural natural period.

MSC:

74L05 Geophysical solid mechanics
86A17 Global dynamics, earthquake problems (MSC2010)
Full Text: DOI

References:

[1] 1. J. L. Bogdanoff, J. E. Goldberg and A. J. Schiff, The effect of ground transmission time on the response of long structures, Bull. Seismol. Soc. Am.55 (1965) 627-640.
[2] 2. A. Zerva, Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications (CRC Press, New York, 2009). genRefLink(16, ’S0219455415500376BIB002’, ’10.1201
[3] 3. A. Der Kureghian and A. Neuenhofer, Response spectrum method for mulit-support seismic excitations, Earthquake Eng. Struct. Dynam.21 (8) (1992) 713-740. genRefLink(16, ’S0219455415500376BIB003’, ’10.1002
[4] 4. C. H. Loh, Analysis of the spatial variation of seismic waves and ground movements from SMART-1 data, Earthquake Eng. Struct. Dynam.13 (1985) 561-581. genRefLink(16, ’S0219455415500376BIB004’, ’10.1002
[5] 5. R. S. Harichandran and E. H. Vanmarcke, Stochastic variation of earthquake ground motion in space and time, J. Eng. Mech., ASCE112 (1986) 154-174. genRefLink(16, ’S0219455415500376BIB005’, ’10.1061
[6] 6. J. E. Luco and H. L. Wong, Response of a rigid foundation to a spatially random ground motion, Earthquake Eng. Struct. Dynam.14 (1986) 891-908. genRefLink(16, ’S0219455415500376BIB006’, ’10.1002
[7] 7. H. Hao, C. S. Oliveira and J. Penzien, Multiple-station ground motion processing and simulation based on SMART-1 array data, Nuclear Eng. Design111 (1989) 293-310. genRefLink(16, ’S0219455415500376BIB007’, ’10.1016
[8] 8. C. H. Loh and S. G. Lin, Directionality and simulation in spatial variation of seismic waves, Eng. Struct.12 (1990) 134-143. genRefLink(16, ’S0219455415500376BIB008’, ’10.1016
[9] 9. C. S. Oliveira, H. Hao and J. Penzien, Ground motion modeling for Multiple-input structural analysis, Struct. Safety10 (1991) 79-93. genRefLink(16, ’S0219455415500376BIB009’, ’10.1016
[10] 10. N. A. Abrahamson, Spatial variation of multiple support inputs, in Proc. 1st U. S. Seminar on Seismic Evaluation and Retrofit of Steel Bridges, A Caltrans and University of California at Berkeley Seminar, San Francisco, CA (1993).
[11] 11. A. Bayraktar, A. A. Dumanoglu and Y. Calayir, Asynchronous dynamic analysis of dam reservoir foundation systems by the Langrangian approach, Comput. Struct.58 (1996) 925-935. genRefLink(16, ’S0219455415500376BIB011’, ’10.1016
[12] 12. A. Bayraktar and A. A. Dumanoglu, The effect of the asynchronous ground motion on hydrodynamic pressures, Comput. Struct.68 (1998) 271-282. genRefLink(16, ’S0219455415500376BIB012’, ’10.1016
[13] 13. G. Monti, C. Nuti and P. E. Pinto, Nonlinear response of bridges under multi-support excitation, J. Struct. Eng., ASCE122 (1996) 1147-1159. genRefLink(16, ’S0219455415500376BIB013’, ’10.1061
[14] 14. Z. Zembaty and S. Krenk, Spatial seismic excitations and response spectra, J. Eng. Mech., ASCE119 (1993) 2449-2459. genRefLink(16, ’S0219455415500376BIB014’, ’10.1061
[15] 15. M. I. Todorovska and M. D. Trifunac, A note on the propagation of earthquake waves in building with soft first floor, J. Eng. Mech., ASCE116 (1990) 892-900. genRefLink(16, ’S0219455415500376BIB015’, ’10.1061
[16] 16. R. S. Jalali, M. D. Trifunac, G. G. Amiri and M. Zahedi, Wave-passage effects on strength-reduction factors for design of structures near earthquake faults, Soil Dynam. Earthquake Eng.27 (2007) 703-711. genRefLink(16, ’S0219455415500376BIB016’, ’10.1016
[17] 17. R. S. Jalali and M. D. Trifunac, A note on strength-reduction factors for design of structures near earthquake faults, Soil Dynam. Earthquake Eng.28 (2008) 212-222. genRefLink(16, ’S0219455415500376BIB017’, ’10.1016
[18] 18. M. J. O’Rourke, M. C. Bloom and R. Dobry, Apparent propagation velocity of body waves, Earthquake Eng. Struct. Dynam.10 (1982) 283-294. genRefLink(16, ’S0219455415500376BIB018’, ’10.1002
[19] 19. H. Boissières and E. H. Vanmarcke, Estimation of lags for a seismograph array: Wave propagation and composite correlation, Soil Dynam. Earthquake Eng.14 (1995) 5-22. genRefLink(16, ’S0219455415500376BIB019’, ’10.1016
[20] 20. S. Quayyum, I. M. Nazmul, M. Iasmin and K. M. Amanat, Effects of randomly distributed infill on columns of reinforced concrete frames with soft ground storey, Int. J. Struct. Stab. Dynam.10 (3) (2011) 555-569. [Abstract] genRefLink(128, ’S0219455415500376BIB020’, ’000278827900009’);
[21] 21. H. Degee, B. Rossi and D. Jehin, Geometrically nonlinear analysis of steel storage racks submitted to earthquake loading, Int. J. Struct. Stab. Dynam.11 (5) (2011) 949-967. [Abstract] genRefLink(128, ’S0219455415500376BIB021’, ’000294118600008’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.