×

The existence and asymptotic estimates of solutions for a third-order nonlinear singularly perturbed boundary value problem. (English) Zbl 1427.34076

In this paper, the authors analyze the existence and asymptotic behavior of the solutions of the third-order singularly perturbed differential equation \[ \varepsilon\frac{d^3y}{dx^3}-\frac1xf(x,y)\frac{d^2y}{dx^2}+g_1(x,y)\frac{dy}{dx}+g_2(x,y)=0, \ x\in(0,1) \] subject to the three-point boundary condition \[ y(0)=\mu y(\eta), \ p_1y'(0)-p_2y''(0)=A, \ y(1)=B, \] where \(\varepsilon\geq0\) is sufficiently small parameter, \(p_1>0\), \(p_2\geq0\), \(\eta\in(0,1)\), \(\mu<0\) and \(A\), \(B\) are given constants; the functions \(f>0\), \(g_1<0\) and \(g_2\) are \(C^2\) on \([0,1]\times\mathbb{R}\).
Combining the Green’s function approach to boundary value problems and the Schauder fixed point theorem, the appropriate lower and upper bounds on the solutions are constructed demonstrating the occurrence of boundary layer at the end-point \(x=1\) of the interval \([0,1]\).

MSC:

34E15 Singular perturbations for ordinary differential equations
34B27 Green’s functions for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Ahmadinia, M., Safari, Z.: Numerical solution of singularly perturbed boundary value problems by improved least squares method. J. Comput. Appl. Math. 331, 156-165 (2018) · Zbl 1377.65092 · doi:10.1016/j.cam.2017.09.023
[2] Howes, F.A.: The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow. SIAM J. Appl. Math. 43, 993-1004 (1983) · Zbl 0532.76042 · doi:10.1137/0143065
[3] Heidel, J.W.: A second-order nonlinear boundary value problem. J. Math. Anal. Appl. 48, 493-503 (1974) · Zbl 0294.34009 · doi:10.1016/0022-247X(74)90172-3
[4] Du, Z., Ge, W., Zhou, M.: Singular perturbations for third-order nonlinear multi-point boundary value problem. J. Differ. Equ. 218(1), 69-90 (2005) · Zbl 1084.34014 · doi:10.1016/j.jde.2005.01.005
[5] Zhao, W.: Singular perturbations of boundary value problems for a class of third-order nonlinear ordinary differential equations. J. Differ. Equ. 88, 265-278 (1990) · Zbl 0718.34010 · doi:10.1016/0022-0396(90)90099-B
[6] Shen, J., Han, M.: Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem with a turning point. Commun. Nonlinear Sci. Numer. Simul. 19, 2632-2643 (2014) · Zbl 1510.34120 · doi:10.1016/j.cnsns.2013.12.033
[7] O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991) · Zbl 0743.34059 · doi:10.1007/978-1-4612-0977-5
[8] Du, Z.: Existence and uniqueness results for third-order nonlinear differential systems. Appl. Math. Comput. 218, 2981-2987 (2011) · Zbl 1251.34032
[9] Xu, Y., Du, Z., Wei, L.: Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation. Nonlinear Dyn. 83, 65-73 (2016) · Zbl 1349.37071 · doi:10.1007/s11071-015-2309-5
[10] Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 261, 5324-5349 (2016) · Zbl 1358.34051 · doi:10.1016/j.jde.2016.08.003
[11] Liu, W., Vleck, E.: Turning points and traveling waves in FitzHugh-Nagumo type equations. J. Differ. Equ. 225, 381-410 (2006) · Zbl 1103.34031 · doi:10.1016/j.jde.2005.10.006
[12] Ou, C., Wu, J.: Persistence of wave fronts in delayed nonlocal reaction – diffusion equations. J. Differ. Equ. 238, 219-261 (2007) · Zbl 1117.35037 · doi:10.1016/j.jde.2006.12.010
[13] Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275, 988-1007 (2018) · Zbl 1392.35223 · doi:10.1016/j.jfa.2018.05.005
[14] Bai, Z., et al.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17, 1175-1187 (2014) · Zbl 1312.34007 · doi:10.2478/s13540-014-0220-2
[15] Wei, Y., Song, Q., Bai, Z.: Existence and iterative method for some fourth order nonlinear boundary value problems. Appl. Math. Lett. 87, 101-107 (2019) · Zbl 1472.34042 · doi:10.1016/j.aml.2018.07.032
[16] Valarmathi, S., Ramanujam, N.: A computational method for solving boundary value problems for third-order singularly perturbed differential equations. Appl. Math. Comput. 129, 345-373 (2002) · Zbl 1025.65045
[17] Omel’chenko, O.E., Recke, L., Butuzov, V.F., Nefedov, N.N.: Time-periodic boundary layer solutions to singularly perturbed parabolic problems. J. Differ. Equ. 262, 4823-4862 (2017) · Zbl 1362.35031 · doi:10.1016/j.jde.2016.12.020
[18] Lodhi, R.K., Mishra, H.K.: Quintic B-spline method for solving second order linear and nonlinear singularly perturbed two-point boundary value problems. J. Comput. Appl. Math. 319, 170-187 (2017) · Zbl 1360.65198 · doi:10.1016/j.cam.2017.01.011
[19] Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection – diffusion problem. J. Differ. Equ. 213, 81-120 (2005) · Zbl 1159.35309 · doi:10.1016/j.jde.2005.02.011
[20] Lagerstrom, P.A.: Matched Asymptotic Expansions. Springer, New York (1988) · Zbl 0666.34064 · doi:10.1007/978-1-4757-1990-1
[21] Kelley, W.: Asymptotically singular boundary value problems. Math. Comput. Model. 32, 541-548 (2000) · Zbl 0970.34017 · doi:10.1016/S0895-7177(00)00151-5
[22] Xie, F.: On a class of singular boundary value problems with singular perturbation. J. Differ. Eq. 252, 2370-2387 (2012) · Zbl 1241.34027 · doi:10.1016/j.jde.2011.10.003
[23] Franz, S., Kopteva, N.: Green’s function estimates for a singularly perturbed convection – diffusion problem. J. Differe. Eq. 252, 1521-1545 (2012) · Zbl 1235.35087 · doi:10.1016/j.jde.2011.07.033
[24] Bai, Z., Du, Z.: Positive solutions for some second-order four-point boundary value problems. J. Math. Anal. Appl. 330, 34-50 (2007) · Zbl 1115.34016 · doi:10.1016/j.jmaa.2006.07.044
[25] Lin, X., Du, Z.: Positive solutions of M-point boundary value problem for second-order dynamic equations on time scales. J. Differ. Equ. Appl. 14, 851-864 (2008) · Zbl 1149.34014 · doi:10.1080/10236190701871968
[26] Guo, L., Sun, J., Zhao, Y.: Existence of positive solutions for nonlinear third-order three-point boundary value problems. Nonlinear Anal. 68, 3151-3158 (2008) · Zbl 1141.34310 · doi:10.1016/j.na.2007.03.008
[27] Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace system. Bound. Value Probl. 2018, 63 (2018) · Zbl 1499.34179 · doi:10.1186/s13661-018-0981-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.