×

An arbitrated quantum signature scheme based on hyperchaotic quantum cryptosystem. (English) Zbl 1283.94066

Summary: A chaos-based arbitrated quantum signature (AQS) scheme is designed on the basis of an improved quantum chaotic encryption algorithm whose security is ensured due to the implementation of the quantum one-time pad that embraces the key-dependent chaotic operation string. It involves in a small-scale quantum computation network with three participants in three phases, i.e. initializing phase, signing phase and verifying phase. The signatory signs the encrypted message and then the receiver verifies the signature is valid with the aid of an arbitrator who plays a crucial role when a dispute arises. Analysis shows that the signature can neither be forged nor disavowed by the malicious attackers.

MSC:

94A60 Cryptography
81P94 Quantum cryptography (quantum-theoretic aspects)
Full Text: DOI

References:

[1] Nielsen M., Quantum Computation and Quantum Information (2000)
[2] DOI: 10.1103/PhysRevA.65.042312 · doi:10.1103/PhysRevA.65.042312
[3] DOI: 10.1103/PhysRevA.78.016301 · doi:10.1103/PhysRevA.78.016301
[4] DOI: 10.1103/PhysRevA.67.042317 · doi:10.1103/PhysRevA.67.042317
[5] DOI: 10.1103/PhysRevA.79.054307 · doi:10.1103/PhysRevA.79.054307
[6] DOI: 10.1103/PhysRevA.82.042325 · doi:10.1103/PhysRevA.82.042325
[7] DOI: 10.1103/PhysRevA.85.056301 · doi:10.1103/PhysRevA.85.056301
[8] DOI: 10.1103/PhysRevLett.91.109801 · doi:10.1103/PhysRevLett.91.109801
[9] DOI: 10.1103/PhysRevA.84.062330 · doi:10.1103/PhysRevA.84.062330
[10] DOI: 10.1103/PhysRevA.84.022344 · doi:10.1103/PhysRevA.84.022344
[11] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[12] DOI: 10.1103/PhysRevLett.68.3121 · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[13] DOI: 10.1103/PhysRevA.66.022301 · doi:10.1103/PhysRevA.66.022301
[14] DOI: 10.1038/35106500 · doi:10.1038/35106500
[15] DOI: 10.1103/PhysRevLett.87.167902 · doi:10.1103/PhysRevLett.87.167902
[16] DOI: 10.1103/PhysRevA.79.054307 · doi:10.1103/PhysRevA.79.054307
[17] DOI: 10.1103/PhysRevA.84.012336 · doi:10.1103/PhysRevA.84.012336
[18] DOI: 10.1016/S0375-9601(98)00086-3 · Zbl 0936.94013 · doi:10.1016/S0375-9601(98)00086-3
[19] DOI: 10.1109/81.904880 · Zbl 0998.94016 · doi:10.1109/81.904880
[20] DOI: 10.1103/PhysRevLett.101.208901 · doi:10.1103/PhysRevLett.101.208901
[21] DOI: 10.1103/PhysRevA.63.036301 · doi:10.1103/PhysRevA.63.036301
[22] DOI: 10.1109/JQE.2011.2107889 · doi:10.1109/JQE.2011.2107889
[23] DOI: 10.1103/PhysRevA.71.016301 · doi:10.1103/PhysRevA.71.016301
[24] DOI: 10.1103/PhysRevA.77.014302 · doi:10.1103/PhysRevA.77.014302
[25] DOI: 10.1103/PhysRevA.72.044302 · doi:10.1103/PhysRevA.72.044302
[26] DOI: 10.1103/RevModPhys.74.145 · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[27] DOI: 10.1016/j.optcom.2010.09.080 · doi:10.1016/j.optcom.2010.09.080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.