×

Semilinear Schrödinger flows on hyperbolic spaces: scattering in \(H^{1}\). (English) Zbl 1203.35262

The authors prove the well-posedness and scattering in \(H^1\) of the initial-value problem for a nonlinear Schrödinger equation of the form \((i\partial_t+\Delta_g)u=N(u)\), \(u(0)=\phi\) on the hyperbolic spaces \(\mathbb{H}^d\), \(d\geq 2\), where the nonlinearity is of the form \(N(u)=u|u|^{2\sigma}\), for appropriate values of \(\sigma\in (0,\infty)\). Such a problem on Euclidean spaces has been studied extensively, see the books [T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics 10. Providence, RI: American Mathematical Society (AMS); New York, NY: Courant Institute of Mathematical Sciences. (2003; Zbl 1055.35003)] and [T. Tao, Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics 106. Providence, RI: American Mathematical Society (AMS). (2006; Zbl 1106.35001)] and the references therein. On Euclidean spaces, the global well-posedness is known, and scattering to linear solutions has been shown for \(\sigma\in (2/d,2/(d-2))\) while it is known to fail for \(\sigma\in (0,1/d)\), which makes the results of the present paper surprising.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35P25 Scattering theory for PDEs
35Q41 Time-dependent Schrödinger equations and Dirac equations
47A40 Scattering theory of linear operators

References:

[1] Anker J.-P.: L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type. Ann. Math. 132, 597–628 (1990) · Zbl 0741.43009 · doi:10.2307/1971430
[2] Anker J.-P., Ji L.: Heat kernel and Green function estimates on noncompact symmetric spaces. Geom. Funct. Anal. 9, 1035–1091 (1999) · Zbl 0942.43005 · doi:10.1007/s000390050107
[3] Anker, J.-P., Pierfelice, V.: Nonlinear Schrödinger equation on real hyperbolic spaces (preprint) (2008)
[4] Banica V.: The nonlinear Schrödinger equation on the hyperbolic space. Comm. Partial Differ. Equ. 32(10), 1643–1677 (2007) · Zbl 1143.35091 · doi:10.1080/03605300600854332
[5] Banica, V., Carles, R., Duyckaerts, T.: On scattering for NLS: from Euclidean to hyperbolic space (preprint) (2008) · Zbl 1168.35316
[6] Banica V., Carles R., Staffilani G.: Scattering theory for radial nonlinear Schrödinger equations on hyperbolic space. Geom. Funct. Anal. 18, 367–399 (2008) · Zbl 1186.35198 · doi:10.1007/s00039-008-0663-x
[7] Banica V., Duyckaerts T.: Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds. Dyn. Partial Differ. Equ. 4, 335–359 (2007) · Zbl 1137.35010
[8] Barab J.: Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation. J. Math. Phys. 25, 3270–3273 (1984) · Zbl 0554.35123 · doi:10.1063/1.526074
[9] Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993) · Zbl 0787.35097 · doi:10.1007/BF01896020
[10] Bourgain J.: Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal. 3, 157–178 (1993) · Zbl 0787.35096 · doi:10.1007/BF01896021
[11] Bourgain J.: Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12, 145–171 (1999) · Zbl 0958.35126 · doi:10.1090/S0894-0347-99-00283-0
[12] Bray, W.O.: Aspects of harmonic analysis on real hyperbolic space. Fourier analysis, Orono, ME, 1992. Lecture Notes in Pure and Applied Mathematics, vol. 157, pp. 77–102. Dekker, New York (1994) · Zbl 0841.43018
[13] Burq N., Gérard P., Tzvetkov N.: An instability property of the nonlinear Schrödinger equation on S d . Math. Res. Lett. 9, 323–335 (2002) · Zbl 1003.35113
[14] Burq N., Gérard P., Tzvetkov N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126, 569–605 (2004) · Zbl 1067.58027 · doi:10.1353/ajm.2004.0016
[15] Burq N., Gérard P., Tzvetkov N.: Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces. Invent. Math. 159, 187–223 (2005) · Zbl 1092.35099 · doi:10.1007/s00222-004-0388-x
[16] Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003) · Zbl 1055.35003
[17] Clerc J.-L., Stein E.M.: L p -multipliers for noncompact symmetric spaces. Proc. Natl. Acad. Sci. USA 71, 3911–3912 (1974) · Zbl 0296.43004 · doi:10.1073/pnas.71.10.3911
[18] Colliander J., Delort J.-M., Kenig C., Staffilani G.: Bilinear estimates and applications to 2D NLS. Trans. Am. Math. Soc. 353, 3307–3325 (2001) · Zbl 0970.35142 · doi:10.1090/S0002-9947-01-02760-X
[19] Colliander J., Holmer J., Visan M., Zhang X.: Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on \({\mathbb{R}}\) . Commun. Pure Appl. Anal. 7, 467–489 (2008) · Zbl 1157.35103 · doi:10.3934/cpaa.2008.7.467
[20] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \({\mathbb{R}^{3}}\) . Commun. Pure Appl. Math. 57, 987–1014 (2004) · Zbl 1060.35131 · doi:10.1002/cpa.20029
[21] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^{3}}\) . Ann. Math 167, 767–865 (2008) · Zbl 1178.35345 · doi:10.4007/annals.2008.167.767
[22] Cowling M.: The Kunze–Stein phenomenon. Ann. Math. 107, 209–234 (1978) · doi:10.2307/1971142
[23] Ginibre J., Velo G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64, 363–401 · Zbl 0535.35069
[24] Grillakis M.: On nonlinear Schödinger equations. Comm. Partial Differ. Equ. 25, 1827–1844 (2000) · Zbl 0970.35134 · doi:10.1080/03605300008821569
[25] Helgason S.: Radon–Fourier transform on symmetric spaces and related group representations. Bull. Am. Math. Soc. 71, 757–763 (1965) · Zbl 0163.37001 · doi:10.1090/S0002-9904-1965-11380-5
[26] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, Providence (2001) · Zbl 0993.53002
[27] Helgason, S.: Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39. American Mathematical Society, Providence (1994) · Zbl 0809.53057
[28] Ionescu A.D.: An endpoint estimate for the Kunze–Stein phenomenon and related maximal operators. Ann. Math. 152, 259–275 (2000) · Zbl 0970.43002 · doi:10.2307/2661383
[29] Ionescu A.D.: Fourier integral operators on noncompact symmetric spaces of real rank one. J. Funct. Anal. 174, 274–300 (2000) · Zbl 0962.43004 · doi:10.1006/jfan.2000.3572
[30] Ionescu A.D.: Singular integrals on symmetric spaces of real rank one. Duke Math. J. 114, 101–122 (2002) · Zbl 1007.43010 · doi:10.1215/S0012-7094-02-11415-X
[31] Kato T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor 46, 113–129 (1987)
[32] Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[33] Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006) · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[34] Killip, R., Visan, M., Tao, T.: The cubic nonlinear Schrödinger equation in two dimensions with radial data (Preprint) (2007) · Zbl 1187.35237
[35] Kunze R.A., Stein E.M.: Uniformly bounded representations and harmonic analysis of the 2 {\(\times\)} 2 unimodular group. Am. J. Math. 82, 1–62 (1960) · Zbl 0156.37104 · doi:10.2307/2372876
[36] Nakanishi K.: Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimensions 1 and 2. J. Funct. Anal. 169, 201–225 (1999) · Zbl 0942.35159 · doi:10.1006/jfan.1999.3503
[37] Pierfelice V.: Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces. Math. Z. 260, 377–392 (2008) · Zbl 1153.35074 · doi:10.1007/s00209-007-0279-0
[38] Ryckman E., Visan M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \({\mathbb{R}^{1+4}}\) . Am. J. Math. 129, 1–60 (2007) · Zbl 1160.35067
[39] Stanton R.J., Tomas P.A.: Expansions for spherical functions on noncompact symmetric spaces. Acta Math. 140, 251–271 (1978) · Zbl 0411.43014 · doi:10.1007/BF02392309
[40] Strauss, W.: Nonlinear Scattering theory, Scattering theory in mathematical physics. In: Lavita, J., Marchand, J.P. (eds.) Reidel (1974) · Zbl 0297.35062
[41] Tao T.: Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data. N. Y. J. Math. 11, 57–80 (2005) · Zbl 1119.35092
[42] Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence (2006) · Zbl 1106.35001
[43] Tao T., Visan M., Zhang X.: Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140, 165–202 (2007) · Zbl 1187.35246 · doi:10.1215/S0012-7094-07-14015-8
[44] Tao T., Visan M., Zhang X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm. Partial Differ. Equ. 32, 1281–1343 (2007) · Zbl 1187.35245 · doi:10.1080/03605300701588805
[45] Tataru D.: Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Am. Math. Soc. 353, 795–807 (2001) · Zbl 0956.35088 · doi:10.1090/S0002-9947-00-02750-1
[46] Visan M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007) · Zbl 1131.35081 · doi:10.1215/S0012-7094-07-13825-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.