×

Reconstructing global fields from dynamics in the abelianized Galois group. (English) Zbl 1431.11110

Since F. Gaßmann’s 1926 paper [Math. Z. 25, 661–675 (1926; JFM 52.0156.03)], it has been known that there exist distinct number fields with a common zeta function. The failure of these and related invariants to differentiate between number fields (and, more generally, global fields) can be addressed by means of dynamical systems. In particular, the authors prove that global fields \(\mathbb{K}, \mathbb{L}\) are isomorphic if and only if there is an orbit equivalence of certain dynamical systems induced by the Artin reciprocity map for each.
Given \(\mathbb{K}\), the action defining the dynamical system comes about from “the group of fractional ideals (finite ideles modulo idelic units \(\widehat{\mathscr O}^{*}_{\mathbb{K}}\)) and also the monoid \(I_{\mathbb{K}}\) of integral ideals, act[ing] on [...] the quotient of \(G^{\text{ab}}_{\mathbb{K}} \times \widehat{\mathscr O}_{\mathbb{K}}\) by the subgroup \(\{(\text{rec}^{-1}(u), u) \mid u \in \widehat{\mathscr O}^{*}_{\mathbb{K}}\), where \(\widehat{\mathscr O}_{\mathbb{K}}\) is the set of integral adeles” of the field \(\mathbb{K}\).
The paper is well motivated and clearly cites related work. The authors raise interesting questions, including: “Can one reconstruct a number field from its associated dynamical system ... rather than ... reconstructing an isomorphism of fields from an isomorphism of their dynamical systems ...”?

MSC:

11M55 Relations with noncommutative geometry
11R37 Class field theory
11R42 Zeta functions and \(L\)-functions of number fields
11R56 Adèle rings and groups
14H30 Coverings of curves, fundamental group
46N55 Applications of functional analysis in statistical physics
58B34 Noncommutative geometry (à la Connes)
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

Citations:

JFM 52.0156.03

References:

[1] Angelakis, A., Stevenhagen, P.: Imaginary quadratic fields with isomorphic abelian galois groups, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium (eds. Everett W. Howe and Kiran S. Kedlaya), The Open Book Series, vol. 1, MSP, Berkeley, pp. 21-39 (2013) · Zbl 1344.11072
[2] Bourbaki, N.: General topology. Chapters 1-4, Elements of mathematics, Springer, 3-540-64241-2, Berlin, Heidelberg, Paris, (1989) · Zbl 0683.54003
[3] Bost, J.-B., Connes, A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1(3), 411-457 (1995) · Zbl 0842.46040 · doi:10.1007/BF01589495
[4] Cornelissen, G., Karemaker, V.: Hecke algebra isomorphisms and adelic points on algebraic groups. Doc. Math. 22, 851-871 (2017) · Zbl 1418.11093
[5] Cornelissen, G., Marcolli, M.: Quantum statistical mechanics, \[L\] L-series and anabelian geometry, Preprint, arXiv:1009.0736 (2010) · Zbl 1329.82007
[6] Cornelissen, G., Marcolli, M.: Quantum Statistical Mechanics, \[L\] L-Series and Anabelian Geometry I: Partition Functions, Trends in Contemporary Mathematics, INdAM Series, vol. 8, p. 10. Springer, Heidelberg (2014) · Zbl 1329.82007
[7] Cornelissen, G.: Curves, dynamical systems, and weighted point counting. Proc. Natl. Acad. Sci. USA 110, 9669-9673 (2013) · Zbl 1295.11124 · doi:10.1073/pnas.1217710110
[8] Cornelissen, G., de Smit, B., Li, X., Marcolli, M., Smit, H.: Characterization of global fields by Dirichlet L-series. Res. Number Theory 5, 7 (2018) · Zbl 1460.11137 · doi:10.1007/s40993-018-0143-9
[9] Deligne, P., Ribet, K.A.: Values of abelian L-functions at negative integers over totally real fields. Invent. Math. 59, 227-286 (1980) · Zbl 0434.12009 · doi:10.1007/BF01453237
[10] Gaßmann, F.: Bemerkungen zur Vorstehenden Arbeit von Hurwitz: Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppen. Math. Z. 25, 661(665)-675 (1926) · JFM 52.0156.03
[11] Grothendieck, A.: Esquisse d’un programme. In: Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, with an English translation on pp. 243-283, unpublished research proposal to CNRS, pp. 5-48 · Zbl 0901.14001
[12] Ha, E., Paugam, F.: Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties. IMRP Int. Math. Res. Pap 2005(5), 237-286 (2005) · Zbl 1173.82305 · doi:10.1155/IMRP.2005.237
[13] Ikeda, M.: Completeness of the absolute Galois group of the rational number field. J. Reine Angew. Math. 291, 1-22 (1977) · Zbl 0366.12008
[14] Karemaker, V.: Hecke algebras for \[{\rm GL}_n\] GLn over local fields. Arch. der Math. 107, 341-353 (2016) · Zbl 1466.20005
[15] Klingen, N.: Arithmetical Similarities. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998) · Zbl 0896.11042
[16] Komatsu, K.: On the adele rings of algebraic number fields. Kōdai Math. Sem. Rep. 28(1), 78-84 (1976) · Zbl 0363.12016 · doi:10.2996/kmj/1138847384
[17] Komatsu, K.: On adèle rings of arithmetically equivalent fields. Acta Arith. 43(2), 93-95 (1984) · Zbl 0527.12010 · doi:10.4064/aa-43-2-93-95
[18] Kubota, T.: Galois group of the maximal abelian extension over an algebraic number field. Nagoya Math. J. 12, 177-189 (1957) · Zbl 0079.26803 · doi:10.1017/S0027763000022042
[19] Kubota, Y., Takeishi, T.: Reconstructing the Bost-Connes semigroup actions from \[KK\]-theory (with an appendix by Xin Li), Preprint arxiv:1709.03281, (2017)
[20] Laca, M., Larsen, N.S., Neshveyev, S.: On Bost-Connes types systems for number fields. J. Number Theory 129(2), 325-338 (2009) · Zbl 1175.46061 · doi:10.1016/j.jnt.2008.09.008
[21] Neshveyev, S., Rustad, S.: Bost-Connes systems associated with function fields. J. Noncommut. Geom. 8(1), 275-301 (2014) · Zbl 1302.46055 · doi:10.4171/JNCG/156
[22] Mochizuki, S.: The absolute anabelian geometry of hyperbolic curves. In: Galois theory and modular forms, Developments in Mathematics, vol. 11, Kluwer Acad. Publ., Boston, pp. 77-122 (2004) · Zbl 1062.14031
[23] Neukirch, J.: Kennzeichnung der \[p\] p-adischen und der endlichen algebraischen Zahlkörper. Invent. Math. 6, 296-314 (1969) · Zbl 0192.40102
[24] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer, Berlin (1999) · Zbl 0956.11021
[25] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der mathematischen Wissenschaften, vol. 323. Springer, Berlin (2003) · Zbl 0948.11001
[26] Onabe, M.: On the isomorphisms of the Galois groups of the maximal Abelian extensions of imaginary quadratic fields. Nat. Sci. Rep. Ochanomizu Univ. 27(2), 155-161 (1976). http://ci.nii.ac.jp · Zbl 0354.12004
[27] Perlis, R.: On the equation \[\zeta_K(s)=\zeta_{K^{\prime }}(s)\] ζK(s)=ζK′(s). J. Number Theory 9(3), 342-360 (1977) · Zbl 0389.12006
[28] Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2, 134-144 (1966) · Zbl 0147.20303 · doi:10.1007/BF01404549
[29] Turner, S.: Adele rings of global field of positive characteristic. Bol. Soc. Bras. Mat. 9(1), 89-95 (1978) · Zbl 0427.12011 · doi:10.1007/BF02584796
[30] Uchida, K.: Isomorphisms of Galois groups. J. Math. Soc. Jpn 28(4), 617-620 (1976) · Zbl 0329.12013 · doi:10.2969/jmsj/02840617
[31] Uchida, K.: Isomorphisms of Galois groups of algebraic function fields. Ann. Math. (2) 106(3), 589-598 (1977) · Zbl 0372.12017 · doi:10.2307/1971069
[32] Yalkinoglu, B.: On arithmetic models and functoriality of Bost-Connes systems. Invent. Math. 191, 383-425 (2013) · Zbl 1270.46066 · doi:10.1007/s00222-012-0396-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.