×

Transition from chimera/solitary states to traveling waves. (English) Zbl 07881892


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations

References:

[1] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Science, 2001, Cambridge University Press · Zbl 0993.37002
[2] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276, 2001 · Zbl 1370.90052 · doi:10.1038/35065725
[3] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, 2002 · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[4] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 167-256, 2003 · Zbl 1029.68010 · doi:10.1137/S003614450342480
[5] Balanov, A.; Janson, N.; Postnov, D.; Sosnovtseva, O., Synchronization: From Simple to Complex, 2009, Springer · Zbl 1163.34001
[6] Boccaletti, S.; Pisarchik, A. N.; Del Genio, C. I.; Amann, A., Synchronization: From Coupled Systems to Complex Networks, 2018, Cambridge University Press · Zbl 1380.90001
[7] Cardillo, A.; Zanin, M.; Gómez-Gardenes, J.; Romance, M.; García del Amo, A. J.; Boccaletti, S., Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures, Eur. Phys. J. Spec. Top., 215, 23-33, 2013 · doi:10.1140/epjst/e2013-01712-8
[8] Jaros, P.; Maistrenko, Y.; Kapitaniak, T., Chimera states on the route from coherence to rotating waves, Phys. Rev. E, 91, 022907, 2015 · doi:10.1103/PhysRevE.91.022907
[9] Semenova, N.; Strelkova, G.; Anishchenko, V.; Zakharova, A., Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators, Chaos, 27, 061102, 2017 · Zbl 1390.37132 · doi:10.1063/1.4985143
[10] Amari, S.-I., Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern., 27, 77-87, 1977 · Zbl 0367.92005 · doi:10.1007/BF00337259
[11] Compte, A.; Brunel, N.; Goldman-Rakic, P. S.; Wang, X.-J., Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cereb. Cortex, 10, 910-923, 2000 · doi:10.1093/cercor/10.9.910
[12] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67, 2015 · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[13] Schöll, E., Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics, Eur. Phys. J. Spec. Top., 225, 891-919, 2016 · doi:10.1140/epjst/e2016-02646-3
[14] Muni, S. S.; Padhee, S.; Pati, K. C., A Study on the Synchronization Aspect of Star Connected Identical Chua’s Circuits, 2018, IEEE
[15] Belyaev, A.; Ryashko, L., Regular and Chaotic Regimes in the System of Coupled Populations, 2020, AIP Publishing LLC
[16] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385, 2002
[17] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102, 2004 · doi:10.1103/PhysRevLett.93.174102
[18] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106, 234102, 2011 · doi:10.1103/PhysRevLett.106.234102
[19] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Different types of chimera states: An interplay between spatial and dynamical chaos, Phys. Rev. E, 90, 032920, 2014 · doi:10.1103/PhysRevE.90.032920
[20] Slepnev, A. V.; Bukh, A. V.; Vadivasova, T. E., Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity, Nonlinear Dyn., 88, 2983-2992, 2017 · doi:10.1007/s11071-017-3426-0
[21] Zakharova, A.; Kapeller, M.; Schöll, E., Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett., 112, 154101, 2014 · doi:10.1103/PhysRevLett.112.154101
[22] Ulonska, S.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chimera states in networks of van der Pol oscillators with hierarchical connectivities, Chaos, 26, 094825, 2016 · doi:10.1063/1.4962913
[23] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117, 014102, 2016 · doi:10.1103/PhysRevLett.117.014102
[24] Tsigkri-DeSmedt, N.; Hizanidis, J.; Hövel, P.; Provata, A., Multi-chimera states and transitions in the leaky integrate-and-fire model with nonlocal and hierarchical connectivity, Eur. Phys. J. Spec. Top., 225, 1149-1164, 2016 · doi:10.1140/epjst/e2016-02661-4
[25] Buscarino, A.; Frasca, M.; Gambuzza, L. V.; Hövel, P., Chimera states in time-varying complex networks, Phys. Rev. E, 91, 022817, 2015 · doi:10.1103/PhysRevE.91.022817
[26] Omelchenko, I.; Provata, A.; Hizanidis, J.; Schöll, E.; Hövel, P., Robustness of chimera states for coupled FitzHugh-Nagumo oscillators, Phys. Rev. E, 91, 022917, 2015 · doi:10.1103/PhysRevE.91.022917
[27] Banerjee, T.; Dutta, P. S.; Zakharova, A.; Schöll, E., Chimera patterns induced by distance-dependent power-law coupling in ecological networks, Phys. Rev. E, 94, 032206, 2016 · doi:10.1103/PhysRevE.94.032206
[28] Ghosh, S.; Kumar, A.; Zakharova, A.; Jalan, S., Birth and death of chimera: Interplay of delay and multiplexing, Europhys. Lett., 115, 60005, 2016 · doi:10.1209/0295-5075/115/60005
[29] Majhi, S.; Perc, M.; Ghosh, D., Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos, 27, 073109, 2017 · doi:10.1063/1.4993836
[30] Kasatkin, D.; Yanchuk, S.; Schöll, E.; Nekorkin, V., Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings, Phys. Rev. E, 96, 062211, 2017 · doi:10.1103/PhysRevE.96.062211
[31] Bukh, A.; Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps, Chaos, 27, 111102, 2017 · Zbl 1390.37128 · doi:10.1063/1.5009375
[32] Sawicki, J.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chimera states in complex networks: Interplay of fractal topology and delay, Eur. Phys. J. Spec. Top., 226, 1883-1892, 2017 · doi:10.1140/epjst/e2017-70036-8
[33] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 658-661, 2012 · doi:10.1038/nphys2372
[34] Larger, L.; Penkovsky, B.; Maistrenko, Y., Virtual chimera states for delayed-feedback systems, Phys. Rev. Lett., 111, 054103, 2013 · doi:10.1103/PhysRevLett.111.054103
[35] Martens, E. A.; Thutupalli, S.; Fourriere, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. U.S.A., 110, 10563-10567, 2013 · doi:10.1073/pnas.1302880110
[36] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect chimera states for coupled pendula, Sci. Rep., 4, 6379, 2014 · doi:10.1038/srep06379
[37] Gambuzza, L. V.; Buscarino, A.; Chessari, S.; Fortuna, L.; Meucci, R.; Frasca, M., Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys. Rev. E, 90, 032905, 2014 · doi:10.1103/PhysRevE.90.032905
[38] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators, Phys. Rev. E, 90, 030902, 2014 · doi:10.1103/PhysRevE.90.030902
[39] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos, 24, 013102, 2014 · doi:10.1063/1.4858996
[40] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662-665, 2012 · doi:10.1038/nphys2371
[41] Wickramasinghe, M.; Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns, PloS One, 8, e80586, 2013 · doi:10.1371/journal.pone.0080586
[42] Shena, J.; Hizanidis, J.; Kovanis, V.; Tsironis, G. P., Turbulent chimeras in large semiconductor laser arrays, Sci. Rep., 7, 42116, 2017 · doi:10.1038/srep42116
[43] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions, Phys. Rev. E, 89, 060901, 2014 · doi:10.1103/PhysRevE.89.060901
[44] Berner, R.; Polanska, A.; Schöll, E.; Yanchuk, S., Solitary states in adaptive nonlocal oscillator networks, Eur. Phys. J. Spec. Top., 229, 2183-2203, 2020 · doi:10.1140/epjst/e2020-900253-0
[45] Jaros, P.; Brezetsky, S.; Levchenko, R.; Dudkowski, D.; Kapitaniak, T.; Maistrenko, Y., Solitary states for coupled oscillators with inertia, Chaos, 28, 011103, 2018 · Zbl 1390.34136 · doi:10.1063/1.5019792
[46] Wu, H.; Dhamala, M., Dynamics of Kuramoto oscillators with time-delayed positive and negative couplings, Phys. Rev. E, 98, 032221, 2018 · doi:10.1103/PhysRevE.98.032221
[47] Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V., Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?, Europhys. Lett., 112, 40002, 2015 · doi:10.1209/0295-5075/112/40002
[48] Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors, Eur. Phys. J. Spec. Top., 226, 1857-1866, 2017 · doi:10.1140/epjst/e2017-70023-1
[49] Semenova, N. I.; Rybalova, E. V.; Strelkova, G. I.; Anishchenko, V. S., “Coherence-incoherence” transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors, Regul. Chaotic Dyn., 22, 148-162, 2017 · Zbl 1376.37078 · doi:10.1134/S1560354717020046
[50] Semenova, N.; Vadivasova, T.; Anishchenko, V., Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps, Eur. Phys. J. Spec. Top., 227, 1173-1183, 2018 · doi:10.1140/epjst/e2018-800035-y
[51] Mikhaylenko, M.; Ramlow, L.; Jalan, S.; Zakharova, A., Weak multiplexing in neural networks: Switching between chimera and solitary states, Chaos, 29, 023122, 2019 · Zbl 1409.34070 · doi:10.1063/1.5057418
[52] Rybalova, E.; Anishchenko, V.; Strelkova, G.; Zakharova, A., Solitary states and solitary state chimera in neural networks, Chaos, 29, 071106, 2019 · Zbl 1420.34078 · doi:10.1063/1.5113789
[53] Schülen, L.; Ghosh, S.; Kachhvah, A. D.; Zakharova, A.; Jalan, S., Delay engineered solitary states in complex networks, Chaos, Solitons Fractals, 128, 290-296, 2019 · Zbl 1483.34092 · doi:10.1016/j.chaos.2019.07.046
[54] Schülen, L.; Janzen, D. A.; Medeiros, E. S.; Zakharova, A., Solitary states in multiplex neural networks: Onset and vulnerability, Chaos, Solitons Fractals, 145, 110670, 2021 · Zbl 1498.92016 · doi:10.1016/j.chaos.2021.110670
[55] Taher, H.; Olmi, S.; Schöll, E., Enhancing power grid synchronization and stability through time-delayed feedback control, Phys. Rev. E, 100, 062306, 2019 · doi:10.1103/PhysRevE.100.062306
[56] Hellmann, F.; Schultz, P.; Jaros, P.; Levchenko, R.; Kapitaniak, T.; Kurths, J.; Maistrenko, Y., Network-induced multistability through lossy coupling and exotic solitary states, Nat. Commun., 11, 592, 2020 · doi:10.1038/s41467-020-14417-7
[57] Berner, R.; Yanchuk, S.; Schöll, E., What adaptive neuronal networks teach us about power grids, Phys. Rev. E, 103, 042315, 2021 · doi:10.1103/PhysRevE.103.042315
[58] Kemeth, F. P.; Haugland, S. W.; Schmidt, L.; Kevrekidis, I. G.; Krischer, K., A classification scheme for chimera states, Chaos, 26, 094815, 2016 · doi:10.1063/1.4959804
[59] Zakharova, A.; Kapeller, M.; Schöll, E., Amplitude Chimeras and Chimera Death in Dynamical Networks, 2016, IOP Publishing
[60] Bogomolov, S. A.; Slepnev, A. V.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S., Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 43, 25-36, 2017 · Zbl 1471.37040 · doi:10.1016/j.cnsns.2016.06.024
[61] Shepelev, I. A.; Bukh, A. V.; Strelkova, G. I.; Vadivasova, T. E.; Anishchenko, V. S., Chimera states in ensembles of bistable elements with regular and chaotic dynamics, Nonlinear Dyn., 90, 2317-2330, 2017 · doi:10.1007/s11071-017-3805-6
[62] Muni, S.; Njıtacke, Z.; Feudjio, C.; Fozin, T.; Awrejcewicz, J., Route to chaos and chimera states in a network of memristive Hindmarsh-Rose neurons model with external excitation, Chaos Theory Appl., 4, 119-127, 2022 · doi:10.51537/chaos.1144123
[63] Muni, S.; Provata, A., Chimera states in ring-star network of Chua circuits, Nonlinear Dyn., 101, 2509-2521, 2020 · doi:10.1007/s11071-020-05910-1
[64] Santos, V., Sales, M., Muni, S., Szezech, J., Batista, A., Yanchuk, S., and Kurths, J., “Identification of single- and double-well coherence-incoherence patterns by the binary distance matrix,” arXiv:2211.11454v2.
[65] Xie, J.; Knobloch, E.; Kao, H.-C., Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E, 90, 022919, 2014 · doi:10.1103/PhysRevE.90.022919
[66] Omelchenko, I.; Omel’chenko, E.; Hövel, P.; Schöll, E., When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett., 110, 224101, 2013 · doi:10.1103/PhysRevLett.110.224101
[67] Olmi, S.; Martens, E. A.; Thutupalli, S.; Torcini, A., Intermittent chaotic chimeras for coupled rotators, Phys. Rev. E, 92, 030901, 2015 · doi:10.1103/PhysRevE.92.030901
[68] Bordyugov, G.; Pikovsky, A.; Rosenblum, M., Self-emerging and turbulent chimeras in oscillator chains, Phys. Rev. E, 82, 035205, 2010 · doi:10.1103/PhysRevE.82.035205
[69] Bolotov, M.; Smirnov, L.; Osipov, G.; Pikovsky, A., Simple and complex chimera states in a nonlinearly coupled oscillatory medium, Chaos, 28, 045101, 2018 · Zbl 1390.34124 · doi:10.1063/1.5011678
[70] Maistrenko, Y.; Sudakov, O.; Osiv, O.; Maistrenko, V., Chimera states in three dimensions, New J. Phys., 17, 073037, 2015 · doi:10.1088/1367-2630/17/7/073037
[71] Kuramoto, Y.; Shima, S.-I., Rotating spirals without phase singularity in reaction-diffusion systems, Prog. Theor. Phys. Suppl., 150, 115-125, 2003 · doi:10.1143/PTPS.150.115
[72] Shima, S.-I.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E, 69, 036213, 2004 · doi:10.1103/PhysRevE.69.036213
[73] Bukh, A.; Anishchenko, V., Spiral, target, and chimera wave structures in a two-dimensional ensemble of nonlocally coupled van der Pol oscillators, Tech. Phys. Lett., 45, 675-678, 2019 · doi:10.1134/S1063785019070046
[74] Rybalova, E.; Strelkova, G.; Anishchenko, V., Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps, Chaos, Solitons Fractals, 115, 300-305, 2018 · Zbl 1416.39010 · doi:10.1016/j.chaos.2018.09.003
[75] Omelchenko, I.; Riemenschneider, B.; Hövel, P.; Maistrenko, Y.; Schöll, E., Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E, 85, 026212, 2012 · doi:10.1103/PhysRevE.85.026212
[76] Majhi, S.; Kapitaniak, T.; Ghosh, D., Solitary states in multiplex networks owing to competing interactions, Chaos, 29, 013108, 2019 · doi:10.1063/1.5061819
[77] Wolfrum, M.; Omel’chenko, E., Chimera states are chaotic transients, Phys. Rev. E, 84, 015201, 2011 · doi:10.1103/PhysRevE.84.015201
[78] Loos, S. A.; Claussen, J. C.; Schöll, E.; Zakharova, A., Chimera patterns under the impact of noise, Phys. Rev. E, 93, 012209, 2016 · doi:10.1103/PhysRevE.93.012209
[79] Rybalova, E. V.; Klyushina, D. Y.; Anishchenko, V. S.; Strelkova, G. I., Impact of noise on the amplitude chimera lifetime in an ensemble of nonlocally coupled chaotic maps, Regul. Chaotic Dyn., 24, 432-445, 2019 · Zbl 1479.39021 · doi:10.1134/S1560354719040051
[80] Bukh, A. V.; Slepnev, A. V.; Anishchenko, V. S.; Vadivasova, T. E., Stability and noise-induced transitions in an ensemble of nonlocally coupled chaotic maps, Regul. Chaotic Dyn., 23, 325-338, 2018 · Zbl 1408.39013 · doi:10.1134/S1560354718030073
[81] Shepelev, I.; Bukh, A.; Muni, S.; Anishchenko, V., Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators, Chaos, Solitons Fractals, 135, 109725, 2020 · Zbl 1489.34060 · doi:10.1016/j.chaos.2020.109725
[82] Shepelev, I.; Bukh, A.; Muni, S., Quantifying the transition from spiral waves to spiral wave chimeras in a lattice of self-sustained oscillators, Regul. Chaotic Dyn., 25, 597-615, 2020 · Zbl 1480.34053 · doi:10.1134/S1560354720060076
[83] Shepelev, I.; Muni, S.; Schöll, E.; Strelkova, G., Repulsive inter-layer coupling induces anti-phase synchronization, Chaos, 31, 063116, 2021 · Zbl 1465.34065 · doi:10.1063/5.0054770
[84] Shepelev, I.; Muni, S.; Vadivasova, T., Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling, Chaos, 31, 021104, 2021 · Zbl 1458.34093 · doi:10.1063/5.0044327
[85] Shepelev, I.; Muni, S.; Vadivasova, T. E., Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling, Chaos, 31, 043136, 2021 · Zbl 1460.94092 · doi:10.1063/5.0048324
[86] Cromer, A., Stable solutions using the Euler approximation, Am. J. Phys., 49, 455-459, 1981 · doi:10.1119/1.12478
[87] Popova, E. S.; Stankevich, N. V.; Kuznetsov, A. P., Cascade of invariant curve doubling bifurcations and quasi-periodic Hénon attractor in the discrete Lorenz-84 model, Izv. Saratov Univ. New Ser: Phys., 20, 222-232, 2020 · doi:10.18500/1817-3020-2020-20-3-222-232
[88] Ushio, T.; Hirai, K., Chaos induced by the generalized Euler method, Int. J. Syst. Sci., 17, 669-678, 1986 · Zbl 0607.65050 · doi:10.1080/00207728608926835
[89] Sprott, J. C., Chaos and Time-Series Analysis, 2003, Oxford University Press, Oxford, UK · Zbl 1012.37001
[90] Zaytcev, V. V., The discrete van der Pol oscillator: Finite differences and slow amplitudes, Izv. VUZ. Appl. Nonlinear Dyn., 25, 70-78, 2017 · doi:10.18500/0869-6632-2017-25-6-70-78
[91] Nguyen-Van, T.; Hori, N., New class of discrete-time models for non-linear systems through discretisation of integration gains, IET Control Theory Appl., 7, 80-89, 2013 · doi:10.1049/iet-cta.2012.0010
[92] Astakhov, V.; Shabunin, A.; Uhm, W.; Kim, S., Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism, Phys. Rev. E, 63, 056212, 2001 · doi:10.1103/PhysRevE.63.056212
[93] Muni, S. S.; McLachlan, R. I.; Simpson, D. J.
[94] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15, 9-20, 1980 · Zbl 0488.70015 · doi:10.1007/BF02128236
[95] Afraimovich, V.; Shilnikov, L. P., Invariant two-dimensional tori, their breakdown and stochasticity, Am. Math. Soc. Transl., 149, 201-212, 1991 · Zbl 0751.58024 · doi:10.1090/trans2/149
[96] Endo, T.; Mori, S., Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators, IEEE Trans. Circuits Syst., 25, 7-18, 1978 · Zbl 0376.93019 · doi:10.1109/TCS.1978.1084380
[97] Ermentrout, G., The behavior of rings of coupled oscillators, J. Math. Biol., 23, 55-74, 1985 · Zbl 0583.92002 · doi:10.1007/BF00276558
[98] Rybalova, E. V.; Strelkova, G. I.; Vadivasova, T. E.; Anishchenko, V. S., Bistability promotes solitary states in ensembles of nonlocally coupled maps, Proc. SPIE, 11067, 110670P, 2019 · doi:10.1117/12.2523278
[99] Santos, V. D.; Szezech, J. Jr.; Batista, A. M.; Iarosz, K. C.; Baptista, M. D. S.; Ren, H. P.; Grebogi, C.; Viana, R. L.; Caldas, I.; Maistrenko, Y. L., Riddling: Chimera’s dilemma, Chaos, 28, 081105, 2018 · Zbl 1396.34049 · doi:10.1063/1.5048595
[100] Dos Santos, V.; Borges, F. S.; Iarosz, K. C.; Caldas, I.; Szezech, J. D.; Viana, R. L.; Baptista, M. S.; Batista, A. M., Basin of attraction for chimera states in a network of Rössler oscillators, Chaos, 30, 083115, 2020 · Zbl 1445.34057 · doi:10.1063/5.0014013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.