×

Coarse-grained stochastic model of myosin-driven vesicles into dendritic spines. (English) Zbl 1491.92036

Summary: We study the dynamics of membrane vesicle motor transport into dendritic spines, which are bulbous intracellular compartments in neurons that play a key role in transmitting signals between neurons. We consider the stochastic analogue of the vesicle transport model in [Y. Park and T. G. Fai, Bull. Math. Biol. 82, No. 11, Paper No. 141, 30 p. (2020; Zbl 1451.92076)]. The stochastic version, which may be considered as an agent-based model, relies mostly on the action of individual myosin motors to produce vesicle motion. To aid in our analysis, we coarse-grain this agent-based model using a master equation combined with a partial differential equation describing the probability of local motor positions. We confirm through convergence studies that the coarse-graining captures the essential features of bistability in velocity (observed in experiments) and waiting-time distributions to switch between steady-state velocities. Interestingly, these results allow us to reformulate the translocation problem in terms of the mean first passage time for a run-and-tumble particle moving on a finite domain with absorbing boundaries at the two ends. We conclude by presenting numerical and analytical calculations of vesicle translocation.

MSC:

92C20 Neural biology
92C17 Cell movement (chemotaxis, etc.)

Citations:

Zbl 1451.92076

Software:

SciPy; Python

References:

[1] D. J. Acheson, Elementary Fluid Dynamics, Oxford Appl. Math. Comput. Sci., Clarendor Press, Oxford, 1991. · Zbl 0719.76001
[2] M. Adrian, R. Kusters, C. J. Wierenga, C. Storm, C. C. Hoogenraad, and L. C. Kapitein, Barriers in the brain: resolving dendritic spine morphology and compartmentalization, Front. Neuroanatomy, 8 (2014), 142.
[3] J. Allard, M. Doumic, A. Mogilner, and D. Oelz, Bidirectional sliding of two parallel microtubules generated by multiple identical motors, J. Math. Biol., 79 (2019), pp. 571-594. · Zbl 1420.92005
[4] G. An, B. Fitzpatrick, S. Christley, P. Federico, A. Kanarek, R. M. Neilan, M. Oremland, R. Salinas, R. Laubenbacher, and S. Lenhart, Optimization and control of agent-based models in biology: A perspective, Bull. Math. Biol., 79 (2017), pp. 63-87.
[5] L. Angelani, Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries, J. Phys. A, 48 (2015), 495003. · Zbl 1337.82015
[6] L. Angelani, R. Di Leonardo, and M. Paoluzzi, First-passage time of run-and-tumble particles, European Phys. J. E, 37 (2014), pp. 1-6.
[7] D. J. Bicout, Green’s functions and first passage time distributions for dynamic instability of microtubules, Phys. Rev. E, 56 (1997), 6656.
[8] E. B. Bloss, W. G. Janssen, D. T. Ohm, F. J. Yuk, S. Wadsworth, K. M. Saardi, B. S. McEwen, and J. H. Morrison, Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex, J. Neurosci., 31 (2011), pp. 7831-7839.
[9] M. Bovyn, B. R. Janakaloti Narayanareddy, S. Gross, and J. Allard, Diffusion of kinesin motors on cargo can enhance binding and run lengths during intracellular transport, Mole. Biol. Cell, 32 (2021), pp. 984-994.
[10] A. B. Bowen, A. M. Bourke, B. G. Hiester, C. Hanus, and M. J. Kennedy, Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines, Elife, 6 (2017), e27362.
[11] P. Bressloff and J. Newby, Directed intermittent search for hidden targets, New J. Phys., 11 (2009), 023033.
[12] M. E. da Silva, M. Adrian, P. Schätzle, J. Lipka, T. Watanabe, S. Cho, K. Futai, C. J. Wierenga, L. C. Kapitein, and C. C. Hoogenraad, Positioning of AMPA receptor-containing endosomes regulates synapse architecture, Cell Reports, 13 (2015), pp. 933-943.
[13] C. R. Doering, K. V. Sargsyan, and L. M. Sander, Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation, Multiscale Model. Simul., 3 (2005), pp. 283-299. · Zbl 1072.60092
[14] T. G. Fai, R. Kusters, J. Harting, C. H. Rycroft, and L. Mahadevan, Active elastohydrodynamics of vesicles in narrow blind constrictions, Phys. Rev. Fluids, 2 (2017), 113601.
[15] R. Fan, Random Walks with Absorbing Barriers Modeled by Telegraph Equation with Absorbing Boundaries, Southern Illinois University, PhD thesis, 2018.
[16] C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer, Berlin, 2009. · Zbl 1181.60001
[17] T. Guérin, J. Prost, and J.-F. Joanny, Bidirectional motion of motor assemblies and the weak-noise escape problem, Phys. Rev. E, 84 (2011), 041901.
[18] T. Guérin, J. Prost, and J.-F. Joanny, Motion reversal of molecular motor assemblies due to weak noise, Phys. Rev. Lett., 106 (2011), 068101.
[19] P. Hanggi and P. Talkner, First-passage time problems for non-Markovian processes, Phys. Rev. A, 32 (1985), p. 1934.
[20] K. M. Harris and J. K. Stevens, Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics, J. Neurosci., 9 (1989), pp. 2982-2997.
[21] H. Hering and M. Sheng, Dentritic spines: Structure, dynamics and regulation, Nat. Rev. Neurosci., 2 (2001), pp. 880-888.
[22] F. C. Hoppensteadt and C. S. Peskin, Modeling and Simulation in Medicine and the Life Sciences, Texts Appl. Math. 10, Springer Berlin, 2012. · Zbl 1013.92001
[23] A. HUXLEY, Muscle structure and theories of contraction, Progr. Biophys. Biophys. Chem., 7 (1957), pp. 255-318.
[24] Wolfram, Mathematica, Version, IL, 2021.
[25] S. A. Irwin, R. Galvez, and W. T. Greenough, Dendritic spine structural anomalies in fragile-x mental retardation syndrome, Cerebral Cortex, 10 (2000), pp. 1038-1044.
[26] F. Jülicher and J. Prost, Cooperative molecular motors, Phys. Rev. Lett., 75 (1995), 2618.
[27] A. Kunwar, S. K. Tripathy, J. Xu, M. K. Mattson, P. Anand, R. Sigua, M. Vershinin, R. J. McKenney, C. Y. Clare, A. Mogilner, and S. P. Gross, Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 18960-18965.
[28] I. A. Kuznetsov and A. V. Kuznetsov, Modeling tau transport in the axon initial segment, Math. Biosci., 329 (2020), 108468. · Zbl 1453.92075
[29] H. M. Lacker and C. Peskin, A mathematical method for the unique determination of cross-bridge properties from steady-state mechanical and energetic experiments on macroscopic muscle, in Lectures on Mathematics in the Life Sciences, AMS, Providence, RI, 1986, pp. 121-153. · Zbl 0588.92004
[30] J. A. Levitt, M. K. Kuimova, G. Yahioglu, P.-H. Chung, K. Suhling, and D. Phillips, Membrane-bound molecular rotors measure viscosity in live cells via fluorescence lifetime imaging, J. Phys. Chem. C, 113 (2009), pp. 11634-11642.
[31] H. J. Leydolt, First-passage times and solutions of the telegrapher equation with boundaries, Phys. Rev. E, 47 (1993), 3988.
[32] O. López and N. Ratanov, Kac’s rescaling for jump-telegraph processes, Statist. Probab. Lett., 82 (2012), pp. 1768-1776. · Zbl 1266.60135
[33] O. López and N. Ratanov, On the asymmetric telegraph processes, J. Appl. Probab., 51 (2014), pp. 569-589. · Zbl 1304.60079
[34] A. Majewska, A. Tashiro, and R. Yuste, Regulation of spine calcium dynamics by rapid spine motility, J. Neurosci., 20 (2000), pp. 8262-8268.
[35] K. Malakar, V. Jemseena, A. Kundu, K. V. Kumar, S. Sabhapandit, S. N. Majumdar, S. Redner, and A. Dhar, Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension, J. Stat. Mech.: Theory Exp., 2018 (2018), p. 043215. · Zbl 1459.82182
[36] J. Masoliver, K. Lindenberg, and B. J. West, First-passage times for non-Markovian processes, Phys. Rev. A, 33 (1986), p. 2177.
[37] J. Masoliver and G. H. Weiss, First passage times for a generalized telegrapher’s equation, Phys. A 183 (1992), pp. 537-548.
[38] C. Miermans, R. Kusters, C. Hoogenraad, and C. Storm, Biophysical model of the role of actin remodeling on dendritic spine morphology, PloS One, 12 (2017), e0170113.
[39] F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr, Universal survival probability for a d-dimensional run-and-tumble particle, Phys. Rev. Lett., 124 (2020), 090603.
[40] M. J. Müller, S. Klumpp, and R. Lipowsky, Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 4609-4614.
[41] J. Newby and P. C. Bressloff, Random intermittent search and the tug-of-war model of motor-driven transport, J. Stat. Mech. Theory Exp., 2010 (2010), P04014.
[42] J. M. Newby and P. C. Bressloff, Directed intermittent search for a hidden target on a dendritic tree, Phys. Rev. E, 80 (2009), 021913.
[43] J. M. Newby and J. P. Keener, An asymptotic analysis of the spatially inhomogeneous velocity-jump process, Multiscale Model. Simul., 9 (2011), pp. 735-765. · Zbl 1236.60079
[44] E. A. Nimchinsky, B. L. Sabatini, and K. Svoboda, Structure and function of dendritic spines, Annu. Rev. Physiol., 64 (2002), pp. 313-353.
[45] M. Park, J. M. Salgado, L. Ostroff, T. D. Helton, C. G. Robinson, K. M. Harris, and M. D. Ehlers, Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes, Neuron, 52 (2006), pp. 817-830.
[46] Y. Park and T. G. Fai, Dynamics of vesicles driven into closed constrictions by molecular motors, Bull. Math. Biol., 82 (2020), pp. 1-31. · Zbl 1451.92076
[47] P. Penzes, M. E. Cahill, K. A. Jones, J.-E. VanLeeuwen, and K. M. Woolfrey, Dendritic spine pathology in neuropsychiatric disorders, Nature Neurosci., 14 (2011), pp. 285-293.
[48] M. A. Pinsky, Lectures on Random Evolution, World Scientific, River Edge, NJ, 1991. · Zbl 0925.60139
[49] S. Redner, A Guide to First-Passage Processes, Cambridge University Press, Cambridge, 2001. · Zbl 0980.60006
[50] M. Rief, R. S. Rock, A. D. Mehta, M. S. Mooseker, R. E. Cheney, and J. A. Spudich, Myosin-v stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9482-9486.
[51] W. C. Risher, T. Ustunkaya, J. Singh Alvarado, and C. Eroglu, Rapid golgi analysis method for efficient and unbiased classification of dendritic spines, PloS One, 9 (2014), pp. 1-8, https://doi.org/10.1371/journal.pone.0107591.
[52] V. Rossetto, The one-dimensional asymmetric persistent random walk, J. Stat. Mech. Theory Exp., 2018 (2018), 043204. · Zbl 1459.82110
[53] P. Singh and A. Kundu, Generalised “arcsine” aws for run-and-tumble particle in one dimension, J. Stat. Mech. Theory Exp., 2019 (2019), 083205. · Zbl 1457.82347
[54] P. Singh and A. Kundu, Local time for run and tumble particle, Phys. Rev. E, 103 (2021), 042119.
[55] P. Singh, S. Sabhapandit, and A. Kundu, Run-and-tumble particle in inhomogeneous media in one dimension, J. Stat. Mech. Theory Exp., 2020 (2020), 083207. · Zbl 1459.60177
[56] J. D. Smith and S. A. McKinley, Assessing the impact of electrostatic drag on processive molecular motor transport, Bull. Math. Biol., 80 (2018), pp. 2088-2123. · Zbl 1398.92063
[57] J. Tang and M. Xiao, The first passage time for position-dependent correlated random walk with absorbing boundary condition, J. Stat. Mech. Theory Exp., 2019 (2019), p. 073201. · Zbl 1457.82161
[58] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al., Scipy 1.0: Fundamental algorithms for scientific computing in python, Nature Methods, 17 (2020), pp. 261-272.
[59] C. L. Walker, A. Uchida, Y. Li, N. Trivedi, J. D. Fenn, P. C. Monsma, R. C. Lariviére, J.-P. Julien, P. Jung, and A. Brown, Local acceleration of neurofilament transport at nodes of ranvier, J. Neurosci., 39 (2019), pp. 663-677.
[60] W. J. Walter and S. Diez, Myosin shifts into reverse gear, Nature Nanotechnol., 7 (2012), pp. 213-214.
[61] Z. Wang, J. G. Edwards, N. Riley, D. W. Provance, R. Karcher, X. Li, I. G. Davison, M. Ikebe, J. A. Mercer, J. A. Kauer, and M. D. Ehlers, Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity, Cell, 135 (2008), pp. 535-548, https://doi.org/10.1016/j.cell.2008.09.057.
[62] G. H. Weiss, First passage times for correlated random walks and some generalizations, J. Stat. Phys., 37 (1984), pp. 325-330. · Zbl 0587.60065
[63] G. H. Weiss, Some applications of persistent random walks and the telegrapher’s equation, Phys. A, 311 (2002), pp. 381-410. · Zbl 0996.35040
[64] J.-C. Xu, J. Fan, X. Wang, S. M. Eacker, T.-I. Kam, L. Chen, X. Yin, J. Zhu, Z. Chi, H. Jiang, R. Chen, T. M. Dawson, and V. L. Dawson, Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity, Sci. Transl. Med., 8 (2016), 333ra48.
[65] R. Yuste, Dendritic Spines, MIT Press, Cambridge, MA, 2010.
[66] S. Zacks, Generalized integrated telegraph processes and the distribution of related stopping times, J. Appl. Probab., 41 (2004), pp. 497-507. · Zbl 1052.60085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.