×

A subpixel matching method for stereovision of narrow baseline remotely sensed imagery. (English) Zbl 1426.94021

Summary: In this paper, an accurate and efficient image matching method based on phase correlation is proposed to estimate disparity with subpixel precision, which is used for the stereovision of narrow baseline remotely sensed images. The multistep strategy is adopted in our technical frame; thus the disparity estimation is divided into two steps: integer-pixel prematching and subpixel matching. Firstly, integer-pixel disparity is estimated by employing a cross-based local matching method. Then the relationship of corresponding points is established under the guidance of integer-pixel disparity. The subimages are extracted through selecting the corresponding points as the center. Finally, the subpixel disparity is obtained by matching the subimages utilizing a novel variant of phase correlation approach. The experiment results show that the proposed method can match different kinds of large-sized narrow baseline remotely sensed images and estimate disparity with subpixel precision automatically.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Long, T.; Jiao, W.; He, G.; Zhang, Z., A fast and reliable matching method for automated georeferencing of remotely-sensed imagery, Remote Sensing, 8, 1, article 56, (2016) · doi:10.3390/rs8010056
[2] Delon, J.; Rougé, B., Small baseline stereovision, Journal of Mathematical Imaging and Vision, 28, 3, 209-223, (2007) · Zbl 1523.68108 · doi:10.1007/s10851-007-0001-1
[3] Pham, C. C.; Jeon, J. W., Domain transformation-based efficient cost aggregation for local stereo matching, IEEE Transactions on Circuits and Systems for Video Technology, 23, 7, 1119-1130, (2013) · doi:10.1109/TCSVT.2012.2223794
[4] Fan, D.; Shen, E.; Li, L., Small baseline stereo matching method based on phase correlation, Journal of Geomatics Science and Technology, 30, 154-157, (2013)
[5] Morgan, G. L. K.; Liu, J. G.; Yan, H., Precise subpixel disparity measurement from very narrow baseline stereo, IEEE Transactions on Geoscience and Remote Sensing, 48, 9, 3424-3433, (2010) · doi:10.1109/TGRS.2010.2046672
[6] Bian, J.-L.; Men, C.-G.; Li, X., A fast stereo matching method based on small baseline, Journal of Electronics and Information Technology, 34, 3, 517-522, (2012) · doi:10.3724/sp.j.1146.2011.00826
[7] Sabater, N.; Morel, J. M.; Almansa, A., How accurate can block matches be in stereo vision?, SIAM Journal on Imaging Sciences, 4, 472-500, (2011) · Zbl 1215.68261 · doi:10.1137/100797849
[8] Igual, L.; Preciozzi, J.; Garrido, L., Automatic low baseline stereo in urban areas, Inverse Problems and Imaging, 1, 318-348, (2007) · Zbl 1135.68052
[9] Shen, E.; Fan, D.; Sun, X., Smallbaseline stereo matching method based on SGM and phase correlation, Journal of China University of Mining and Technology, 44, 1, 183-188, (2015)
[10] Sabater, N.; Blanchet, G.; Moisan, L.; Almansa, A.; Morel, J.-M., Review of low-baseline stereo algorithms and benchmarks, Image and Signal Processing for Remote Sensing XVI, 783005 · doi:10.1117/12.865087
[11] Arai, T.; Iwasaki, A., Fine image matching for narrow baseline stereovision, Proceedings of the 32nd IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’12) · doi:10.1109/igarss.2012.6351026
[12] Inglada, J.; Muron, V.; Pichard, D.; Feuvrier, T., Analysis of artifacts in subpixel remote sensing image registration, IEEE Transactions on Geoscience and Remote Sensing, 45, 1, 254-264, (2007) · doi:10.1109/TGRS.2006.882262
[13] Miclea, V.-C.; Vancea, C.-C.; Nedevschi, S., New sub-pixel interpolation functions for accurate real-time stereo-matching algorithms, Proceedings of the 11th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP ’15), IEEE · doi:10.1109/iccp.2015.7312625
[14] Haller, I.; Nedevschi, S., Design of interpolation functions for subpixel-accuracy stereo-vision systems, IEEE Transactions on Image Processing, 21, 2, 889-898, (2012) · Zbl 1373.62325 · doi:10.1109/TIP.2011.2163163
[15] Stentoumis, C.; Grammatikopoulos, L.; Kalisperakis, I.; Karras, G., On accurate dense stereo-matching using a local adaptive multi-cost approach, ISPRS Journal of Photogrammetry and Remote Sensing, 91, 29-49, (2014) · doi:10.1016/j.isprsjprs.2014.02.006
[16] Žbontar, J.; Le Cun, Y., Computing the stereo matching cost with a convolutional neural network, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’15) · doi:10.1109/cvpr.2015.7298767
[17] Shi, C.; Wang, G.; Yin, X.; Pei, X.; He, B.; Lin, X., High-accuracy stereo matching based on adaptive ground control points, IEEE Transactions on Image Processing, 24, 4, 1412-1423, (2015) · Zbl 1408.94593 · doi:10.1109/tip.2015.2393054
[18] Jiang, N.; Qu, Y.; Li, Y., Fast sub-pixel accuracy stereo image matching based on disparity plane, Proceedings of the International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology
[19] Besse, F.; Rother, C.; Fitzgibbon, A.; Kautz, J., PMBP: PatchMatch Belief Propagation for correspondence field estimation, International Journal of Computer Vision, 110, 1, 2-13, (2014) · doi:10.1007/s11263-013-0653-9
[20] Xu, S.; Zhang, F.; He, X.; Shen, X.; Zhang, X., PM-PM: PatchMatch with potts model for object segmentation and stereo matching, IEEE Transactions on Image Processing, 24, 7, 2182-2196, (2015) · Zbl 1408.94740 · doi:10.1109/TIP.2015.2416654
[21] Nagashima, S.; Aoki, T.; Higuchi, T.; Kobayashi, K., A subpixel image matching technique using phase-only correlation, Proceedings of the International Symposium on Intelligent Signal Processing and Communications (ISPACS ’06), IEEE · doi:10.1109/ispacs.2006.364751
[22] Stone, H. S.; Orchard, M. T.; Chang, E.-C.; Martucci, S. A., A fast direct Fourier-based algorithm for subpixel registration of images, IEEE Transactions on Geoscience and Remote Sensing, 39, 10, 2235-2243, (2001) · doi:10.1109/36.957286
[23] Foroosh, H.; Zerubia, J. B.; Berthod, M., Extension of phase correlation to subpixel registration, IEEE Transactions on Image Processing, 11, 3, 188-199, (2002) · doi:10.1109/83.988953
[24] Tong, X.; Xu, Y.; Ye, Z.; Liu, S.; Li, L.; Xie, H.; Wang, F.; Gao, S.; Stilla, U., An improved phase correlation method based on 2-D plane fitting and the maximum kernel density estimator, IEEE Geoscience and Remote Sensing Letters, 12, 9, 1953-1957, (2015) · doi:10.1109/lgrs.2015.2440340
[25] Lu, J.; Shi, K.; Min, D.; Lin, L.; Do, M. N., Cross-based local multipoint filtering, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’12), IEEE · doi:10.1109/cvpr.2012.6247705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.