×

M-polynomials and topological indices of linear chains of benzene, napthalene and anthracene. (English) Zbl 1476.92057

Chemistry as the science of the properties and behavior of matter composed of molecules, or molecular substances. Since the latter consists of atoms and the bonding patterns between them, chemistry is naturally linked to the graph theory that maps structure to the corresponding graph(s). Especially, within the known theory of Bader of ‘Atoms-in-Molecules’. One can say that “chemical graph theory is an emerging subfield of mathematical chemistry which helps in providing us tools such as polynomials and functions [G. Rucker and C. Rucker, “On topological indices, boiling points, and cycloalkanes”, J. Chem. Inf. Comput. Sci. 39, 788–802 (1999)] to characterize properties of substances [S. Klavzar and I. Gutman, “A comparison of the Schultz molecular topological index with the Wiener index”, ibid. 36, 1001–1003 (1996)]” – these words enter the paper under review. The present reviewer himself was also fascinated, as PhD student, by this connection that some of his first works were dedicated to developing the graph theory to the structure of many-electron reduced density matrices [G. G. Daydyusha and E. S. Kryachko, “Algebraic structure of fermion density matrices. I and II”, Intern. J. Quantum Chem. 19, 251–257, 505–514 (1981)].
Let us return to the present paper under review. It actually examines the application of the chemical graph theory to study topological indices and aims to establish closed formulas for M-polynomials of linear chains of benzene, naphthalene, and anthracene graphs. In this paper, the authors also compute some topological indices related to these graphs: first and second Zagreb indices, modified second Zagreb index, generalized and inverse Randić indices, symmetric division index, harmonic index, inverse Sum index, and augmented Zagreb index. These results will be useful in pharmacy, drug design, and many other applied fields of molecular sciences.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C92 Chemical graph theory
05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)

References:

[1] G. Rucker, C. Rucker, On topological indices, boiling points, and cycloalkanes, J. Chem. Inf.Comput. Sci., 39 (1999), 788-802. · JFM 30.0083.03
[2] S. Klavzar, I. Gutman, A comparison of the schultz molecular topological index with the wiener index, J. Chem. Inf. Comput. Sci., 36 (1996), 1001-1003.
[3] F. M. Bruckler, C. T. Dosli, A. Graovac, I. Gutman, On a class of distance-based molecular structure descriptors, Chem. Phys. Lett., 503 (2011), 336-338.
[4] H. Deng, J. Yang, F. Xia, A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes, Comput. Math. Appl., 61 (2011), 3017-3023. · Zbl 1222.05244
[5] H. Zhang, F. Zhang, The clar covering polynomial of hexagonal systems I, Discrete Appl. Math., 69 (1996), 147-167. · Zbl 0859.05070
[6] I. Gutman, Some properties of the Wiener polynomial, Graph. Theory Notes N. Y., 125 (1993), 13-18.
[7] E. Deutsch, S. Klavzar, M-polynomial and degreebased topological indices,Iran. J. Math. Chem, 6 (2015), 93-102. · Zbl 1367.05048
[8] M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and related topological indices of nanostar dendrimers, Symmetry, 8 (2016), 97.
[9] M. Munir, W.Nazeer, S.Rafique, A. R. Nizami, S. M. Kang, M-polynomial and degree-based topological indices of titaniananotubes, Symmetry, 8 (2016), 117.
[10] Y. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of Vphenylenic nanotubes and nanotori, Sci. Rep., 7 (2017), 8756.
[11] M. Munir, W. Nazeer, S. Rafique, A. R. Nizami, S. M. Kang, Some computational aspects of triangular boron nanotubes, Symmetry, 9 (2016), 6. · Zbl 1412.82044
[12] M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of polyhex nanotubes, Symmetry, 8 (2016), 149.
[13] A. Ali, W. Nazeer, M. Munir, S. M. Kang, M-Polynomials and topological indices of zigzag and rhombic benzenoidsystems, Open Chem., 16 (2018), 73-78.
[14] H. Wiener, Structural determination of paran boiling points, JACS, 69 (1947), 17-20.
[15] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of
[16] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Springer Science andBusiness Media, Berlin, Germany, (2012). · Zbl 0657.92024
[17] M. Randic, On characterization of molecular attributes, Acta Chim. Slov., 45 (1998), 239. · Zbl 0918.92027
[18] B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combinatoria, 50 (1998), 225-233. · Zbl 0963.05068
[19] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstic, The vertex-connectivity index revisited, J.Chem. Inf. Comput. Sci., 38 (1998), 819-822.
[20] Y. Hu, X. Li, Y. Shi, T. Xu, I.Gutman, On molecular graphs with smallest and greatest zeroth-order general Randic index, Match-Commun. Math. Co., 54 (2005), 425-434. · Zbl 1082.05090
[21] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovic, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(2003), 85-90.
[22] X. Li, I. Gutman, Mathematical chemistry monographs no. 1, Kragujevac, 330 (2006), 6. · Zbl 1294.92032
[23] L. Kier, Molecular connectivity in chemistry and drug research, Elsevier, NY. USA, 14 (2012).
[24] L. B. Kierand, L. H. Hall, Molecular connectivity in structure activity analysis, research studies, chemometrics research studies press, 1st edition, (1986).
[25] I. Gutman, B. Furtula, Recent Results in the Theory of Randic Index, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, Serbia, (2008). · Zbl 1294.05002
[26] S. Nikolic, G. Kovacevic, A. Milicevic, N. Trinajstic, The Zagreb indices 30 years after, Croa.Chem. Acta, 76 (2003), 113-124.
[27] I. Gutman, K. C. Das, The first Zagreb index 30 years after, Math. Commun. Math. Comput. Chem., 50 (2004), 83-92. · Zbl 1053.05115
[28] K. C. Das, I. Gutman, Some properties of the second Zagreb index, Match-Commun. Math. Co., 52 (2004), 1-3. · Zbl 1077.05094
[29] N. Trinajstic, S. Nikolic, A. Milicevic, I. Gutman, About the Zagreb Indices, Kemija u Industriji:Casopis Kemicara i Kemijskih Inzenjera Hrvatske, 59 (2010), 577-589.
[30] D. Vukicevic, A. Graovac, Valence connectivity versus Randic, Zagreb and modified Zagreb index, a linear algorithm to check discriminative properties of indices in acyclic molecular graphs, Croa.Chem. Acta, 77 (2004), 501-508.
[31] T. Doslic, I. Zubac, Saturation number of benzenoid graphs, Math. Commun. Math. Comput.Chem., (2015). · Zbl 1462.05294
[32] A. Graovac, N. Trinjstic, Graph thoretical search for benzenoid polymers with zero energy gap, Croat. Chem. Acta, 4 (1981), 571-579.
[33] I. Gutman, M. Petkovsek, R. Z. pleterselt, On Hosoya polynomial of benzenoid Graph, Math.Commun., (2001).
[34] D. Vukicevic, N. Trinajstic, Wiener indices of benzenoid graph, Bull. Chem. Technol. Macedon., 23 (2004), 113-129.
[35] I. Gutman, S. Radenkovic, Simple formula for calculating resonance energy of benzenoid hydrocarbons, Bull. Chem. Technol. Macedon., 25 (2006), 17-21.
[36] A. vesel, 4-tilings of benzenoid graphs Math. Commun Math. Comput. Chem., 62 (2009), 221-234. · Zbl 1273.92093
[37] K. C. Das, F. M. Bhatti, S. G. lee, I. Gutman, Spectral properties of the he matrix of hexagonal systems, Math. Commun Math. Comput. Chem., 65 (2011), 753-774. · Zbl 1299.05211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.