×

A Lefschetz trace formula for equivariant cohomology. (English) Zbl 0856.55008

Summary: This paper studies the effect, on the equivariant cohomology of a compact manifold \(X\) with a compact Lie group action \(G\), of an equivariant pair \(F = (f, \varphi) \) of maps, i.e., a smooth map \(f : X \to X\) and a Lie group homomorphism \(\varphi : G \to G\) such that \(f(gx) = \varphi (g) f(x)\). Such a pair mimics the Frobenius map for varieties in characteristic \(p\), and induces a graded map \(F^*\) on equivariant cohomology. Under certain transversality conditions (again mimicing the behaviour of the Frobenius map), we can define a ‘regularized’ Lefschetz number and prove a trace formula relating this number to local fixed point data. These fixed point data are extracted from the fixed-point groupoid associated to the pair \(F\). That is, \(F\) induces a functor of the groupoid defined by \(X\) and \(G\) and the fixed-point groupoid is the two-product of the graph of this functor and the diagonal functor. When the group action is trivial, this formula reduces to the usual Lefschetz trace formula for transverse maps.

MSC:

55N91 Equivariant homology and cohomology in algebraic topology

References:

[1] M. ARTIN and B. MAZUR , On periodic points (Ann. of Math., (2), Vol. 81, 1965 , pp. 82-99). MR 31 #754 | Zbl 0127.13401 · Zbl 0127.13401 · doi:10.2307/1970384
[2] K. BEHREND , The Lefschetz trace formula for algebraic stacks (Invent. Math., Vol. 111, 1993 , pp. 1-33). MR 94d:14023 | Zbl 0792.14005 · Zbl 0792.14005 · doi:10.1007/BF01232427
[3] A. BOREL , Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compact (Ann. of Math., Vol. 57, 1953 , pp. 115-207). MR 14,490e | Zbl 0052.40001 · Zbl 0052.40001 · doi:10.2307/1969728
[4] P. GABRIEL and M. ZISMAN , Calculus of fractions and homotopy theory (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag, Berlin-Heidelberg-New York, 1967 ). MR 35 #1019 | Zbl 0186.56802 · Zbl 0186.56802
[5] H. GILLET , Intersection theory on algebraic stacks and Q-varieties (J. Pure Appl. Algebra, Vol. 34, 1984 , pp. 193-240). MR 86b:14006 | Zbl 0607.14004 · Zbl 0607.14004 · doi:10.1016/0022-4049(84)90036-7
[6] S. LANG , Algebra , 2nd. edition, Addison-Wesley, Reading, Massachusetts, 1984 .
[7] S. LANG , Algebraic groups over finite fields (Amer. J. Math., Vol. 78, no. 3, 1956 , pp. 555-563). MR 19,174a | Zbl 0073.37901 · Zbl 0073.37901 · doi:10.2307/2372673
[8] S. MACLANE , Categories for the working mathematician (Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg-Berlin, 1971 ). MR 50 #7275 | Zbl 0705.18001 · Zbl 0705.18001
[9] G. SEGAL , Classifying spaces and spectral sequences (Publ. Math. I.H.E.S., Vol. 34, 1966 , pp. 105-112). Numdam | MR 38 #718 | Zbl 0199.26404 · Zbl 0199.26404 · doi:10.1007/BF02684591
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.