×

Degenerations of Leibniz and anticommutative algebras. (English) Zbl 1477.17020

Summary: We describe all degenerations of three-dimensional anticommutative algebras \(\mathfrak{Acom}_3\) and of three-dimensional Leibniz algebras \(\mathfrak{Leib}_3\) over \(\mathbb{C}\). In particular, we describe all irreducible components and rigid algebras in the corresponding varieties.

MSC:

17A32 Leibniz algebras
14D06 Fibrations, degenerations in algebraic geometry
14L30 Group actions on varieties or schemes (quotients)

References:

[1] M. A.Alvarez, On rigid 2-step nilpotent Lie algebras. Algebra Colloq.25(2018), 2, 349-360. https://doi.org/10.1142/S100538671800024X. · Zbl 1434.17015
[2] M. A.Alvarez, The variety of 7-dimensional 2-step nilpotent Lie algebras. Symmetry10(2018), 1, 26. https://doi.org/10.3390/sym10010026. · Zbl 1390.17021
[3] M. A.Alvarez and I.Hernández I., On degenerations of Lie superalgebras. Linear Multilinear Algebra, to appear. https://doi.org/10.1080/03081087.2018.1498060. · Zbl 1427.17018
[4] M. A.Alvarez, I.Hernández, and I.Kaygorodov, Degenerations of Jordan superalgebras. Bull. Malays. Math. Sci. Soc.43(2020), https://doi.org/10.1007/s40840-018-0664-3. · Zbl 1477.17096
[5] U.Bekbaev, Complete classification of a class of m-dimensional algebras. J. Phys. Conf. Ser.819(2017), 012012. https://doi.org/10.1088/1742-6596/819/1/012012.
[6] T.Benes and D.Burde, Degenerations of pre-Lie algebras. J. Math. Phys.50(2009), 11, 112102. https://doi.org/10.1063/1.3246608. · Zbl 1284.17019
[7] T.Benes and D.Burde, Classification of orbit closures in the variety of three dimensional Novikov algebras. J. Algebra Appl.13(2014), 2, 1350081. https://doi.org/10.1142/S0219498813500813. · Zbl 1301.17022
[8] D.Burde, Degenerations of nilpotent Lie algebras. J. Lie Theory9(1999), 1, 193-202. · Zbl 1063.17009
[9] D.Burde and C.Steinhoff, Classification of orbit closures of 4-dimensional complex Lie algebras. J. Algebra214(1999), 2, 729-739. https://doi.org/10.1006/jabr.1998.7714. · Zbl 0932.17005
[10] A.Calderón, A.Fernández Ouaridi, and I.Kaygorodov, The classification of n-dimensional anticommutative algebras with (n - 3)-dimensional annihilator. Comm. Algebra47(2019), 1, 173-181. https://doi.org/10.1080/00927872.2018.1468909. · Zbl 1460.17008
[11] J.Casas, M.Insua, M.Ladra, and S.Ladra, An algorithm for the classification of 3-dimensional complex Leibniz algebras. Linear Algebra Appl.436(2012), 9, 3747-3756. https://doi.org/10.1016/j.laa.2011.11.039. · Zbl 1280.17004
[12] J.Casas, A.Khudoyberdiyev, M.Ladra, and B.Omirov, On the degenerations of solvable Leibniz algebras. Linear Algebra Appl.439(2013), 2, 472-487. https://doi.org/10.1016/j.laa.2013.03.029. · Zbl 1305.17001
[13] A.Fialowski and M.Penkava, The moduli space of 4-dimensional nilpotent complex associative algebras. Linear Algebra Appl.457(2014), 408-427. https://doi.org/10.1016/j.laa.2014.05.014. · Zbl 1294.14008
[14] A. T.Gainov, Binary Lie algebras of lower ranks. (Russian). Algebra i Logika Sem.2(1963), 4, 21-40. · Zbl 0161.03603
[15] F.Grunewald and J.O’Halloran, Varieties of nilpotent Lie algebras of dimension less than six. J. Algebra112(1988), 315-325. https://doi.org/10.1016/0021-8693(88)90093-2. · Zbl 0638.17005
[16] F.Grunewald and J.O’Halloran, A characterization of orbit closure and applications. J. Algebra116(1988), 163-175. https://doi.org/10.1016/0021-8693(88)90199-8. · Zbl 0646.17002
[17] F.Grunewald and J.O’Halloran, Deformations of Lie algebras. J. Algebra162(1993), 1, 210-224. https://doi.org/10.1006/jabr.1993.1250. · Zbl 0799.17007
[18] R. A.Horn and V.Sergeichuk, Canonical matrices of bilinear and sesquilinear forms. Linear Algebra Appl.428(2008), 1, 193-223. https://doi.org/10.1016/j.laa.2007.07.023. · Zbl 1141.15011
[19] N.Ismailov, I.Kaygorodov, and Yu.Volkov, The geometric classification of Leibniz algebras. Internat. J. Math.29(2018), 5, 1850035. https://doi.org/10.1142/S0129167X18500350. · Zbl 1423.17005
[20] I.Kaygorodov, Yu.Popov, and Yu.Volkov, Degenerations of binary Lie and nilpotent Malcev algebras. Comm. Algebra46(2018), 11, 4929-4940. https://doi.org/10.1080/00927872.2018.1459647. · Zbl 1441.17027
[21] I.Kaygorodov, Yu.Popov, A.Pozhidaev, and Yu.Volkov, Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear Multilinear Algebra66(2018), 4, 704-716. https://doi.org/10.1080/03081087.2017.1319457. · Zbl 1472.17100
[22] I.Kaygorodov and Yu.Volkov, The variety of 2-dimensional algebras over an algebraically closed field. Canad. J. Math., to appear. https://doi.org/10.4153/S0008414X18000056. · Zbl 1440.17027
[23] I.Kaygorodov and Yu.Volkov, Complete classification of algebras of level two. Moscow Math. J., to appear. arxiv:1710.08943. · Zbl 1440.17027
[24] Yu.Kobayashi, K.Shirayanagi, S.Takahasi, and M.Tsukada, Classification of three dimensional zeropotent algebras over an algebraically closed field. Comm. Algebra45(2017), 12, 5037-5052. https://doi.org/10.1080/00927872.2017.1313426. · Zbl 1414.17001
[25] A.Khudoyberdiyev and B.Omirov, The classification of algebras of level one. Linear Algebra Appl.439(2013), 11, 3460-3463. https://doi.org/10.1016/j.laa.2013.09.020. · Zbl 1286.17006
[26] A.Khudoyberdiyev, M.Ladra, K.Masutova, and B.Omirov, Some irreducible components of the variety of complex (n + 1)-dimensional Leibniz algebras. J. Geom. Phys.121(2017), 228-246. https://doi.org/10.1016/j.geomphys.2017.07.014. · Zbl 1420.17001
[27] J.Lauret, Degenerations of Lie algebras and geometry of Lie groups. Differ. Geom. Appl.18(2003), 2, 177-194. https://doi.org/10.1016/S0926-2245(02)00146-8. · Zbl 1022.22019
[28] J.-L.Loday and T.Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann.296(1993), 1, 139-158. https://doi.org/10.1007/BF01445099. · Zbl 0821.17022
[29] I.Rakhimov and K.Mohd Atan, On contractions and invariants of Leibniz algebras. Bull. Malays. Math. Sci. Soc.35(2012), 557-565. · Zbl 1314.17002
[30] C.Seeley, Degenerations of 6-dimensional nilpotent Lie algebras over ℂ. Comm. Algebra18(1990), 3493-3505. https://doi.org/10.1080/00927879008824088. · Zbl 0709.17006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.